Open Access
Volume 58, Number 1, January-February 2024
Page(s) 157 - 189
Published online 16 February 2024
  1. M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Software 3 (2015) 9–23. [Google Scholar]
  2. H. Aminikhah and J. Biazar, A new analytical method for solving systems of Volterra integral equations. Int. J. Comput. Math. 87 (2010) 1142–1157. [CrossRef] [Google Scholar]
  3. J. Argyris, I. St. Doltsinis and V.D. da silva, Constitutive modelling and computation of non-linear viscoelastic solids. Part I: rheological models and numerical integration techniques. Comput. Methods Appl. Mech. Eng. 88 (1991) 135–163. [CrossRef] [Google Scholar]
  4. D.N. Arnold, Discretization by finite elements of a model parameter dependent problem. Numer. Math. 37 (1981) 405–421. [CrossRef] [MathSciNet] [Google Scholar]
  5. H.T. Banks, S. Hu and Z.R. Kenz, A brief review of elasticity and viscoelasticity for solids. Adv. Appl. Math. Mech. 3 (2011) 1–51. [CrossRef] [MathSciNet] [Google Scholar]
  6. K.J. Bathe, Finite Element Procedures. Prentice-Hall (1996). [Google Scholar]
  7. L. Beirãao da Veiga, D. Mora and G. Rivera, Virtual elements for a shear-deflection formulation of Reissner–Mindlin plates. Math. Comp. 88 (2019) 149–178. [Google Scholar]
  8. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44, Springer (2013). [Google Scholar]
  9. D. Chapelle, A locking-free approximation of curved rods by straight beam elements. Numer. Math. 77 (1997) 299–322. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Chapelle and K.-J. Bathe, The Finite Element Analysis of Shells-Fundamentals. Springer Science & Business Media (2013). [Google Scholar]
  11. T.-M. Chen, The hybrid laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic Timoshenko beams. Int. J. Numer. Methods Eng. 38 (1995) 509–522. [CrossRef] [Google Scholar]
  12. Q. Chen and Y.W. Chan, Integral finite element method for dynamical analysis of elastic–viscoelastic composite structures. Comput. Struct. 74 (2000) 51–64. [CrossRef] [Google Scholar]
  13. G. Chen, X. Xie, Y. Xu and Y. Zhang, A locking-free stabilized embedded discontinuous Galerkin method for linear elasticity with strong symmetric stress and continuous displacement trace approximation. Comput. Math. Appl. 134 (2023) 66–86. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Chinosi and C. Lovadina, Numerical analysis of some mixed finite element methods for Reissner–Mindlin plates. Comput. Mech. 16 (1995) 36–44. [CrossRef] [Google Scholar]
  15. R. Christensen , Theory of Viscoelasticity: An Introduction. Elsevier (2012). [Google Scholar]
  16. R. Durán and E. Liberman, On mixed finite element methods for the Reissner–Mindlin plate model. Math. Comput. 58 (1992) 561–573. [CrossRef] [Google Scholar]
  17. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159. Springer Science & Business Media (2013). [Google Scholar]
  18. R.E. Ewing, Y. Lin, T. Sun, J. Wang and S. Zhang, Sharp l 2-error estimates and superconvergence of mixed finite element methods for non-fickian flows in porous media. SIAM J. Numer. Anal. 40 (2002) 1538–1560. [CrossRef] [MathSciNet] [Google Scholar]
  19. R.S. Falk, Finite elements for the Reissner–Mindlin plate, in Mixed Finite Elements, Compatibility Conditions, and Applications. Springer (2008) 195–232. [CrossRef] [Google Scholar]
  20. W. Flügge, Viscoelasticity. Springer-Verlag, Berlin Google Scholar (1975). [CrossRef] [Google Scholar]
  21. T. Führer, C. García Vera and N. Heuer, A locking-free DPG scheme for Timoshenko beams. Comput. Methods Appl. Math. 21 (2021) 373–383. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.M. Golden and G.A.C. Graham, Boundary Value Problems in Linear Viscoelasticity. Springer Science & Business Media (2013). [Google Scholar]
  23. G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations. Vol. 34. Cambridge University Press (1990). [CrossRef] [Google Scholar]
  24. D. Gutierrez-Lemini, Engineering Viscoelasticity. Springer (2014). [CrossRef] [Google Scholar]
  25. J.S. Hale, M. Brunetti, S.P.A. Bordas and C. Maurini, FEniCS-Shells (2016). [Google Scholar]
  26. G. Harper, R. Wang, J. Liu, S. Tavener and R. Zhang, A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements. Comput. Math. Appl. 80 (2020) 1578–1595. [CrossRef] [MathSciNet] [Google Scholar]
  27. E. Hernández and J. Vellojin, A locking-free finite element formulation for a non-uniform linear viscoelastic Timoshenko beam. Comput. Math. App. 99 (2021) 305–322. [Google Scholar]
  28. E. Hernandez, C. Naranjo and J. Vellojin, Modelling of thin viscoelastic shell structures under Reissner–Mindlin kinematic assumption. Appl. Math. Modell. 79 (2020) 180–199. [CrossRef] [Google Scholar]
  29. V. Janovský, S. Shaw, M.K. Warby and J.R. Whiteman, Numerical methods for treating problems of viscoelastic isotropic solid deformation. J. Comput. Appl. Math. 63 (1995) 91–107. [CrossRef] [MathSciNet] [Google Scholar]
  30. S. Karaa and A.K. Pani, Optimal error estimates of mixed fems for second order hyperbolic integro-differential equations with minimal smoothness on initial data. J. Comput. Appl. Math. 275 (2015) 113–134. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Lee and S.-Y. Yi, Locking-free and locally-conservative enriched Galerkin method for poroelasticity. J. Sci. Comput. 94 (2023) 23. [CrossRef] [Google Scholar]
  32. F. Lepe, D. Mora and R. Rodríguez, Locking-free finite element method for a bending moment formulation of Timoshenko beams. Comput. Math. App. 68 (2014) 118–131. [Google Scholar]
  33. F. Lepe, D. Mora and R. Rodríguez, Finite element analysis of a bending moment formulation for the vibration problem of a non-homogeneous Timoshenko beam. J. Sci. Comput. 66 (2016) 825–848. [CrossRef] [MathSciNet] [Google Scholar]
  34. S.-O. Londen, On an integral equation in a Hilbert space. SIAM J. Math. Anal. 8 (1977) 950–970. [CrossRef] [MathSciNet] [Google Scholar]
  35. C. Lovadina, D. Mora and R. Rodríguez, Approximation of the buckling problem for Reissner–Mindlin plates. SIAM J. Numer. Anal. 48 (2010) 603–632. [CrossRef] [MathSciNet] [Google Scholar]
  36. C. Lovadina, D. Mora and R. Rodríguez, A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam. ESAIM: Math. Model. Numer. Anal. 45 (2011) 603–626. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  37. O. Martin, Quasi-static and dynamic analysis for viscoelastic beams with the constitutive equation in a hereditary integral form. Ann. Univ. Bucharest 5 (2014) 1–13. [Google Scholar]
  38. O. Martin, A modified variational iteration method for the analysis of viscoelastic beams. Appl. Math. Modell. 40 (2016) 7988–7995. [CrossRef] [Google Scholar]
  39. C.C. Miao and S. Tsimin, Finite Element Methods for Integrodifferential Equations. Vol. 9. World Scientific (1998). [Google Scholar]
  40. S. Mukherjee and G.H. Paulino, The elastic-viscoelastic correspondence principle for functionally graded materials, revisited. J. Appl. Mech. 70 (2003) 359–363. [CrossRef] [MathSciNet] [Google Scholar]
  41. G.S. Payette and J.N. Reddy, Nonlinear quasi-static finite element formulations for viscoelastic Euler-Bernoulli and Timoshenko beams. Int. J. Numer. Methods Biomed. Eng. 26 (2010) 1736–1755. [CrossRef] [MathSciNet] [Google Scholar]
  42. G.S. Payette and J.N. Reddy, A nonlinear finite element framework for viscoelastic beams based on the high-order reddy beam theory. J. Eng. Mater. Technol. 135 (2013) 011005. [CrossRef] [Google Scholar]
  43. J.N. Reddy, An Introduction to Continuum Mechanics. Cambridge University Press (2007). [CrossRef] [Google Scholar]
  44. M. Rognes and R. Winther, Mixed finite element methods for linear viscoelasticity using weak symmetry. Math. Models Methods Appl. Sci. – M3AS 20 (2010) 955–985. [CrossRef] [Google Scholar]
  45. F. Saedpanah, Existence and convergence of galerkin approximation for second order hyperbolic equations with memory term. Numer. Methods Part. Differ. Equ. 32 (2016) 548–563. [CrossRef] [Google Scholar]
  46. S. Shaw and J.R. Whiteman, Optimal long-time Lp(0, T ) stability and semidiscrete error estimates for the Volterra formulation of the linear quasistatic viscoelasticity problem. Numer. Math. 88 (2001) 743–770. [CrossRef] [MathSciNet] [Google Scholar]
  47. J.C. Simo and T.J.R. Hughes, Computational inelasticity. Vol. 7. Springer Science & Business Media (2006). [Google Scholar]
  48. R.K. Sinha, R.E. Ewing and R.D. Lazarov, Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data. SIAM J. Numer. Anal. 47 (2009) 3269–3292. [CrossRef] [MathSciNet] [Google Scholar]
  49. D.W. Van Krevelen and K. Te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions. Elsevier (2009). [Google Scholar]
  50. Z. Zheng-You, L. Gen-Guo and C. Chang-Jun, Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation. Appl. Math. Mech. 23 (2002) 1–12. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you