Open Access
Volume 58, Number 1, January-February 2024
Page(s) 131 - 155
Published online 31 January 2024
  1. A.H. Al-Mohy and N.J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33 (2011) 488–511. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Alqahtani and L. Reichel, Multiple orthogonal polynomials applied to matrix function evaluation. BIT Numer. Math. 58 (2018) 835–849. [CrossRef] [Google Scholar]
  3. F. Arrigo and M. Benzi, Updating and downdating techniques for optimizing network communicability. SIAM J. Sci. Comput. 38 (2016) B25–B49. [CrossRef] [Google Scholar]
  4. V. Batagelj and A. Mrvar, Pajek datasets collection. (2006). [Google Scholar]
  5. B. Beckermann, D. Kressner and M. Schweitzer, Low-rank updates of matrix functions. SIAM J. Matrix Anal. Appl. 39 (2018) 539–565. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Bellalij, L. Reichel, G. Rodriguez and H. Sadok, Bounding matrix functionals via partial global block lanczos decomposition. Appl. Numer. Math. 94 (2015) 127–139. [CrossRef] [MathSciNet] [Google Scholar]
  7. R.H. Byrd, M.E. Hribar and J. Nocedal, An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9 (1999) 877–900. [CrossRef] [MathSciNet] [Google Scholar]
  8. R.H. Byrd, J.C. Gilbert and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89 (2000) 149–185. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Chan and L. Akoglu, Optimizing network robustness by edge rewiring: a general framework. Data Min. Knowl. Discov. 30 (2016) 1395–1425. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. Chan, L. Akoglu and H. Tong, Make it or break it: Manipulating robustness in large networks. In Proceedings of the 2014 SIAM International Conference on Data Mining. SIAM (2014) 325–333. [Google Scholar]
  11. T. Chen, A. Greenbaum, C. Musco and C. Musco, Error bounds for lanczos-based matrix function approximation. SIAM J. Matrix Anal. Appl. 43 (2022) 787–811. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Chung, F.R. Chung, F.C. Graham and L. Lu, Complex Graphs and Networks. American Mathematical Soc., Number 107 (2006). [CrossRef] [Google Scholar]
  13. S. Cipolla, F. Durastante and F. Tudisco, Nonlocal pagerank. ESAIM Math. Model. Numer. Anal. 55 (2021) 77–97. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. ComplexNetTSP PowerGrids, Highvoltage power grid networks. (2023). [Google Scholar]
  15. A. Cortinovis, D. Kressner and S. Massei, Divide-and-conquer methods for functions of matrices with banded or hierarchical low-rank structure. SIAM J. Matrix Anal. Appl. 43 (2022) 151–177. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Crescenzi, G. D’angelo, L. Severini and Y. Velaj, Greedily improving our own closeness centrality in a network. ACM Trans. Knowl. Discov. Data (TKDD) 11 (2016) 1–32. [Google Scholar]
  17. G. D’Angelo, M. Olsen and L. Severini, Coverage centrality maximization in undirected networks. In Vol. 43 Proceedings of the AAAI Conference on Artificial Intelligence (2019) 501–508. [Google Scholar]
  18. O. De la Cruz Cabrera, J. Jin, S. Noschese and L. Reichel, Communication in complex networks. Appl. Numer. Math. 172 (2022) 186–205. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Estrada, Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6 (2006) 35–40. [CrossRef] [PubMed] [Google Scholar]
  20. E. Estrada and N. Hatano, Statistical-mechanical approach to subgraph centrality in complex networks. Chem. Phys. Lett. 439 (2007) 247–251. [CrossRef] [Google Scholar]
  21. E. Estrada and Ö. Bodin, Using network centrality measures to manage landscape connectivity. Ecol. Appl. 18 (2008) 1810–1825. [CrossRef] [PubMed] [Google Scholar]
  22. E. Estrada and N. Hatano, Communicability in complex networks. Phys. Rev. E 77 (2008) 036111. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  23. E. Estrada and N. Hatano, Returnability in complex directed networks (digraphs). Linear Algebra Appl. 430 (2009) 1886–1896. [CrossRef] [MathSciNet] [Google Scholar]
  24. E. Estrada and D.J. Higham, Network properties revealed through matrix functions. SIAM Rev. 52 (2010) 696–714. [CrossRef] [MathSciNet] [Google Scholar]
  25. E. Estrada and P.A. Knight, A First Course in Network Theory. Oxford University Press, USA (2015). [Google Scholar]
  26. C. Fenu, D. Martin, L. Reichel and G. Rodriguez, Block Gauss and anti-Gauss quadrature with application to networks. SIAM J. Matrix Anal. Appl. 34 (2013) 1655–1684. [CrossRef] [MathSciNet] [Google Scholar]
  27. P. Fika and M. Mitrouli, Aitken’s method for estimating bilinear forms arising in applications. Calcolo 54 (2017) 455–470. [CrossRef] [MathSciNet] [Google Scholar]
  28. T.N. for Research Core Team, (2023). [Google Scholar]
  29. A. Frommer, K. Lund and D.B. Szyld, Block krylov subspace methods for functions of matrices. Electron. Trans. Numer. Anal. 47 (2017) 100–126. [MathSciNet] [Google Scholar]
  30. K. Garimella, G. De Francisci Morales, A. Gionis and M. Mathioudakis, Reducing controversy by connecting opposing views. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. ACM (2017) 81–90. [Google Scholar]
  31. A. Ghosh and S. Boyd, Growing well-connected graphs. In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE (2006) 6605–6611. [Google Scholar]
  32. A. Ghosh, S. Boyd and A. Saberi, Minimizing effective resistance of a graph. SIAM Rev. 50 (2008) 37–66. [CrossRef] [MathSciNet] [Google Scholar]
  33. D.F. Gleich, Pagerank beyond the web. SIAM Rev. 57 (2015) 321–363. [CrossRef] [MathSciNet] [Google Scholar]
  34. P. Grindrod and T. Lee, Comparison of social structures within cities of very different sizes. R. Soc. Open Sci. 3 (2016) 150526. [CrossRef] [Google Scholar]
  35. M.H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand sides: An introduction, edited by A.H. Siddiqi, I.S. Duff and O. Christensen. In Modern Mathematical Models, Methods and Algorithms for Real World Systems. New Delhi, Anamaya (2007) 420–447. [Google Scholar]
  36. N. Hale, N.J. Higham and L.N. Trefethen, Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46 (2008) 2505–2523. [CrossRef] [MathSciNet] [Google Scholar]
  37. P. Kandolf, A. Koskela, S.D. Relton and M. Schweitzer, Computing low-rank approximations of the Fréchet derivative of a matrix function using Krylov subspace methods. Numer. Linear Algebra Appl. 28 (2021) e2401. [CrossRef] [Google Scholar]
  38. D. Kressner, A Krylov subspace method for the approximation of bivariate matrix functions. In Structured Matrices in Numerical Linear Algebra, Vol. 30 of Springer INdAM Series. Springer, Cham (2019) 197–214. [CrossRef] [Google Scholar]
  39. L.T. Le, T. Eliassi-Rad and H. Tong, Met: A fast algorithm for minimizing propagation in large graphs with small eigen-gaps. In Proceedings of the 2015 SIAM International Conference on Data Mining. SIAM (2015) 694–702. [Google Scholar]
  40. U. Luxburg, A. Radl and M. Hein, Getting lost in space: Large sample analysis of the resistance distance. Adv. Neural Inf. Process. Syst. 23 (2010). [Google Scholar]
  41. S. Massei and F. Tudisco, Matlab code for “Optimizing network robustness via Krylov subspaces”. (2023). [Google Scholar]
  42. R. Mathias, A chain rule for matrix functions and applications. SIAM J. Matrix Anal. Appl. 17 (1996) 610–620. [CrossRef] [MathSciNet] [Google Scholar]
  43. S. Medya, A. Silva, A. Singh, P. Basu and A. Swami, Group centrality maximization via network design. In Proceedings of the 2018 SIAM International Conference on Data Mining. SIAM (2018) 126–134. [Google Scholar]
  44. R.A. Meyer, C. Musco, C. Musco and D.P. Woodruff, Hutch++: optimal stochastic trace estimation. In Symposium on Simplicity in Algorithms (SOSA). Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA (2021) 142–155. [CrossRef] [Google Scholar]
  45. V. Nicosia, R. Criado, M. Romance, G. Russo and V. Latora, Controlling centrality in complex networks. Sci. Rep. 2 (2012) 218. [CrossRef] [Google Scholar]
  46. J. Nocedal and S.J. Wright, Numerical Optimization. Springer (1999). [CrossRef] [Google Scholar]
  47. S. Pozza and F. Tudisco, On the stability of network indices defined by means of matrix functions. SIAM J. Matrix Anal. Appl. 39 (2018) 1521–1546. [CrossRef] [MathSciNet] [Google Scholar]
  48. S. Saha, A. Adiga, B.A. Prakash and A.K.S. Vullikanti, Approximation algorithms for reducing the spectral radius to control epidemic spread. InProceedings of the 2015 SIAM International Conference on Data Mining. SIAM (2015) 568–576. [Google Scholar]
  49. M. Schweitzer, Sensitivity of matrix function based network communicability measures: Computational methods and a priori bounds. Preprint: arXiv:2303.01339 (2023). [Google Scholar]
  50. S.N.A.P. (SNAP), sparse networks collection. (2023). [Google Scholar]
  51. H. Tong, B.A. Prakash, T. Eliassi-Rad, M. Faloutsos and C. Faloutsos, Gelling, and melting, large graphs by edge manipulation. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management. ACM (2012) 245–254. [Google Scholar]
  52. F. Tudisco and D.J. Higham, Node and edge nonlinear eigenvector centrality for hypergraphs. Commun. Phys. 4 (2021) 201. [CrossRef] [Google Scholar]
  53. P. Van Mieghem, D. Stevanović, F. Kuipers, C. Li, R. Van De Bovenkamp, D. Liu and H. Wang, Decreasing the spectral radius of a graph by link removals. Phys. Rev. E 84 (2011) 016101. [CrossRef] [PubMed] [Google Scholar]
  54. S. Vigna, Spectral ranking. Netw. Sci. 4 (2016) 433–445. [CrossRef] [Google Scholar]
  55. S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications (1994). [CrossRef] [Google Scholar]
  56. Z. Yu, C. Wang, J. Bu, X. Wang, Y. Wu and C. Chen, Friend recommendation with content spread enhancement in social networks. Inf. Sci. 309 (2015) 102–118. [CrossRef] [Google Scholar]
  57. Y. Zhang, A. Adiga, A. Vullikanti and B.A. Prakash, Controlling propagation at group scale on networks. In 2015 IEEE International Conference on Data Mining. IEEE (2015) 619–628. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you