Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 1, January-February 2024
|
|
---|---|---|
Page(s) | 335 - 361 | |
DOI | https://doi.org/10.1051/m2an/2023088 | |
Published online | 16 February 2024 |
- P.-A. Absil, R. Mahony and R. Sepulchre, Optimization algorithms on matrix manifolds. Princeton University Press (2009). [Google Scholar]
- R. Adams and J. Fournier, Sobolev Spaces. ISSN, Elsevier Science (2003). [Google Scholar]
- M. Atzmon, A. Gropp and Y. Lipman, Isometric autoencoders. Preprint: arXiv:2006.09289 (2020). [Google Scholar]
- G. Aubert and P. Kornprobst, Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems? SIAM J. Numer. Anal. 47 (2009) 844–860. [Google Scholar]
- T. Aubin, Espaces de Sobolev sur les variétés riemanniennes. Bull. Sci. Math. 100 (1976) 149–173. [MathSciNet] [Google Scholar]
- M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inf. Process. 14 (2001). [Google Scholar]
- D. Berthelot, C. Raffel, A. Roy and I. Goodfellow, Understanding and improving interpolation in autoencoders via an adversarial regularizer. Preprint: arXiv:1807.07543 (2018). [Google Scholar]
- H. Bolcskei, P. Grohs, G. Kutyniok and P. Petersen, Optimal approximation with sparsely connected deep neural networks. SIAM J. Math. Data Sci. 1 (2019) 8–45. [CrossRef] [MathSciNet] [Google Scholar]
- R. Borghol, Some properties of Sobolev spaces. Asymptot. Anal. 51 (2007) 303–318. [MathSciNet] [Google Scholar]
- N. Boumal, An Introduction to Optimization on Smooth Manifolds. Cambridge University Press (2023). [CrossRef] [Google Scholar]
- J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces. Optimal Control and Partial Differential Equations A Volume in Honour of A. Benssoussan’s 60th Birthday (2001) 439–455. [Google Scholar]
- A. Braides, Γ-convergence for beginners, In Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). [Google Scholar]
- J. Braunsmann, Python code for “Convergent autoencoder approximation of low bending and low distortion manifold embeddings”. https://doi.org/10.17879/48978454901 (2023). [Google Scholar]
- J. Braunsmann, M. Rajković, M. Rumpf and B. Wirth, Learning low bending and low distortion manifold embeddings. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2021) 4416–4424. [Google Scholar]
- N. Chen, A. Klushyn, R. Kurle, X. Jiang, J. Bayer and P. Smagt, Metrics for deep generative models. In Proc. of International Conference on Artificial Intelligence and Statistics, PMLR (2018) 1540–1550. [Google Scholar]
- D.L. Donoho and C. Grimes, Image manifolds which are isometric to Euclidean space. J. Math. Imaging Vis. 23 (2005) 5–24. [CrossRef] [Google Scholar]
- X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field and approximation of its sharp interface limits. Math. Comput. 73 (2004) 541–567. [Google Scholar]
- I. Gühring, G. Kutyniok and P. Petersen, Error bounds for approximations with deep ReLU neural networks in Ws,p norms. Anal. Appl. 18 (2020) 803–859. [CrossRef] [MathSciNet] [Google Scholar]
- W. Hantzsche, Einlagerung von Mannigfaltigkeiten in euklidische R¨aume. Math. Z. 43 (1938) 38–58. [CrossRef] [MathSciNet] [Google Scholar]
- K. He, X. Zhang, S. Ren and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proc. of IEEE International Conference on Computer Vision (ICCV) (2015). [Google Scholar]
- E. Hebey, Sobolev Spaces on Riemannian Manifolds. Springer Berlin, Heidelberg (1996). [CrossRef] [Google Scholar]
- H. Hopf, Systeme symmetrischer Bilinearformen und euklidische Modelle der projektiven R¨aume. Vierteljschr. Naturforsch. Ges. Zürich 85 Beiblatt (Festschrift Rudolf Fueter) (1940) 165–177. [MathSciNet] [Google Scholar]
- K. Hornik, M. Stinchcombe and H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 3 (1990) 551–560. [CrossRef] [Google Scholar]
- D.Q. Huynh, Metrics for 3d rotations: Comparison and analysis. J. Math. Imaging Vis. 35 (2009) 155–164. [CrossRef] [Google Scholar]
- K. Kato, J. Zhou, T. Sasaki and A. Nakagawa, Rate-distortion optimization guided autoencoder for isometric embedding in Euclidean latent space. In Proc. of the International Conference on Machine Learning, PMLR (2020) 5166–5176. [Google Scholar]
- D.P. Kingma and M. Welling, Auto-encoding variational Bayes. Preprint: arXiv:1312.6114 (2013). [Google Scholar]
- D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, edited by Y. Bengio and Y. LeCun. In Proc. of 3rd International Conference on Learning Representations (ICLR) (2015). [Google Scholar]
- D. Kohli, A. Cloninger and G. Mishne, Ldle: low distortion local eigenmaps. J. Mach. Learn. Res. 22 (2021) 1–64. [Google Scholar]
- A. Kreuml and O. Mordhorst, Fractional sobolev norms and bv functions on manifolds. Preprint: arXiv:1312.6114 (2018). [Google Scholar]
- N.H. Kuiper, On C1 isometric embeddings II. In Vol. 58 Nederl. Akad. Wetensch. Proc. Ser. A (1955) 683–689. [CrossRef] [Google Scholar]
- N.H. Kuiper, On C1-isometric imbeddings I. In Vol. 58 Indagationes Mathematicae (Proceedings). Elsevier (1955) 545–556. [CrossRef] [Google Scholar]
- J. Lellmann, K. Papafitsoros, C. Schönlieb and D. Spector, Analysis and application of a nonlocal Hessian. SIAM J. Imaging Sci. 8 (2015) 2161–2202. [CrossRef] [MathSciNet] [Google Scholar]
- M. Loève, Probability Theory I. Springer New York, NY (1977). [Google Scholar]
- M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163 (1999) 181–251. [CrossRef] [MathSciNet] [Google Scholar]
- U. Mosco, Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3 (1969) 510–585. [CrossRef] [Google Scholar]
- J. Nash, C1 isometric imbeddings. Ann. Math. (1954) 383–396. [CrossRef] [MathSciNet] [Google Scholar]
- A. Oring, Z. Yakhini and Y. Hel-Or, Autoencoder image interpolation by shaping the latent space. Preprint: arXiv:2008.01487 (2020). [Google Scholar]
- G. Pai, R. Talmon, A. Bronstein and R. Kimmel, Dimal: Deep isometric manifold learning using sparse geodesic sampling. In Proc. of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE (2019) 819–828. [CrossRef] [Google Scholar]
- E. Peterfreund, O. Lindenbaum, F. Dietrich, T. Bertalan, M. Gavish, I.G. Kevrekidis and R.R. Coifman, Local conformal autoencoder for standardized data coordinates. Proc. of the National Academy of Sciences 117 (2020) 30918–30927. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- P. Petersen, M. Raslan and F. Voigtlaender, Topological properties of the set of functions generated by neural networks of fixed size. Found. Comput. Math. 21 (2021) 375–444. [CrossRef] [MathSciNet] [Google Scholar]
- G. Peyré and M. Cuturi, Computational optimal transport with applications to data science. Found. Trends Mach. Learn. 11 (2019) 355–607. [CrossRef] [Google Scholar]
- M. Ranzato, C. Poultney, S. Chopra and Y. LeCun, Efficient learning of sparse representations with an energy-based model. Adv. Neural Inf. Process. 19 (2007) 1137. [Google Scholar]
- N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson and G. Gkioxari, Accelerating 3d deep learning with PyTorch3d. Preprint arXiv:2007.08501 (2020). [Google Scholar]
- S. Rifai, P. Vincent, X. Muller, X. Glorot and Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction. In Proc. of the 28th International Conference on International Conference on Machine Learning (2011). [Google Scholar]
- T. Sakai, Riemannian Geometry. Translations of mathematical monographs. American Mathematical Society, Providence, RI (1996). [Google Scholar]
- A. Schwartz and R. Talmon, Intrinsic isometric manifold learning with application to localization. SIAM J. Imaging Sci. 12 (2019) 1347–1391. [CrossRef] [MathSciNet] [Google Scholar]
- H. Shao, A. Kumar and P. Thomas Fletcher, The Riemannian geometry of deep generative models. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2018) 315–323. [Google Scholar]
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd edition. In Vol. 25 of Springer Series in Computational Mathematics. Springer Berlin, Heidelberg, Berlin (2006). [Google Scholar]
- C. Tompkins, A flat Klein bottle isometrically embedded in Euclidean 4-space. Bull. Am. Math. Soc. 47 (1941) 508. [CrossRef] [Google Scholar]
- A. Trouvé and L. Younes, Local geometry of deformable templates. SIAM J. Math. Anal. 37 (2005) 17–59. [CrossRef] [MathSciNet] [Google Scholar]
- P. Vincent, H. Larochelle, Y. Bengio and P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders. In Proc. of the 25th international conference on Machine Learning (2008) 1096–1103. [CrossRef] [Google Scholar]
- H. Whitney, Collected Papers, Volume II, edited by E. James and T. Domingo (1992). [Google Scholar]
- L. Yonghyeon, S. Yoon, M. Son and F.C. Park, Regularized autoencoders for isometric representation learning. In Proc. of International Conference on Learning Representations (2021). [Google Scholar]
- L. Younes, Shapes and diffeomorphisms. In Vol. 171 of Applied Mathematical Sciences. Springer Berlin, Heidelberg (2010). [CrossRef] [Google Scholar]
- C. Zhang, J. Liu, W. Chen, J. Shi, M. Yao, X. Yan, N. Xu and D. Chen, Unsupervised anomaly detection based on deep autoencoding and clustering. Secur. Commun. Netw. 2021 (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.