Open Access
Issue
ESAIM: M2AN
Volume 58, Number 1, January-February 2024
Page(s) 303 - 333
DOI https://doi.org/10.1051/m2an/2023103
Published online 22 February 2024
  1. F. Alauzet, A changing-topology moving mesh technique for large displacements. Eng. Comput. 30 (2014) 175–200. [CrossRef] [Google Scholar]
  2. F. Alauzet, B. Fabrèges, M.A. Fernández and M. Landajuela, Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures. Comput. Methods Appl. Mech. Eng. 301 (2016) 300–335. [CrossRef] [Google Scholar]
  3. M. Annese, M.A. Fernández and L. Gastaldi, Splitting schemes for a Lagrange multiplier formulation of FSI with immersed thin-walled structure: stability and convergence analysis. IMA J. Numer. Anal. 43 (2022) 881–919. [Google Scholar]
  4. C. Atamian, Q.V. Dinh, R. Glowinski, J. He and J. Priaux, Control approach to fictitious-domain methods. application to fluid dynamics and electro-magnetics. In Domain Decomposition Methods for Partial Differential Equations (1991). [Google Scholar]
  5. F. Baaijens, A fictitious domain/mortar element method for fluid-structure interaction. Int. J. Numer. Methods Fluids 35 (2001) 743–761. [CrossRef] [Google Scholar]
  6. H.J.C. Barbosa and T.J.R. Hughes, The finite element method with Lagrange multipliers on the boundary: circumventing the Babuka-Brezzi condition. Comput. Methods Appl. Mech. Eng. 85 (1991) 109–128. [CrossRef] [Google Scholar]
  7. G.R. Barrenechea and C. González, A stabilized finite element method for a fictitious domain problem allowing small inclusions. Numer. Methods Partial Differ. Equ. 34 (2018) 167–183. [CrossRef] [Google Scholar]
  8. R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Eng. 198 (2009) 3352–3360. [Google Scholar]
  9. F. Bertrand, P.A. Tanguy and F. Thibault, A three-dimensional fictitious domain method for incompressible fluid flow problems. Int. J. Numer. Methods Fluids 25 (1997) 719–736. [CrossRef] [Google Scholar]
  10. D. Boffi and L. Gastaldi, A fictitious domain approach with distributed Lagrange multiplier for fluid-structure interactions. Numer. Math. 135 (2017). [Google Scholar]
  11. D. Boffi, N. Cavallini, F. Gardini and L. Gastaldi, Local mass conservation of Stokes finite elements. J. Sci. Comput. 52 (2012) 383–400. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Boffi, N. Cavallini, F. Gardini and L. Gastaldi, Stabilized Stokes elements and local mass conservation. Bolletino dell Unione Mat. Ital. 5 (2012) 543–573. [Google Scholar]
  13. L. Boilevin-Kayl, M.A. Fernndez and J.-F. Gerbeau, Numerical methods for immersed FSI with thin-walled structures. Comput Fluids 179 (2019) 744–763. [CrossRef] [MathSciNet] [Google Scholar]
  14. F. Brezzi and J. Pitk¨aranta, On the stabilization of finite element approximations of the Stokes equations. In Efficient Solutions of Elliptic Systems, Vol. 10 of Notes on Numerical Fluid Mechanics, edited by W. Hackbush. Vieweg, Braunschweig (1984). [Google Scholar]
  15. E. Burman and P. Hansbo, Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem. Eur. Ser. Appl. Ind. Math.: Math. Model. Numer. Anal. 48 (2014). [Google Scholar]
  16. E. Burman, P. Hansbo and M.G. Larson, Cut finite element method for divergence free approximation of incompressible flow: optimal error estimates and pressure independence (2022) Preprint: arXiv:2207.04734. [Google Scholar]
  17. H. Casquero, C. Bona-Casas and H. Gomez, NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow. Comput. Methods Appl. Mech. Eng. 316 (2017) 646–667. [CrossRef] [Google Scholar]
  18. H. Casquero, C. Bona-Casas, D. Toshniwal, T.J.R. Hughes, H. Gomez and Y. Jessica Zhang, The divergence-conforming immersed boundary method: Application to vesicle and capsule dynamics. J. Comput. Phys. 425 (2021) 109872. [CrossRef] [Google Scholar]
  19. S.H. Christiansen and K. Hu, Generalized finite element systems for smooth differential forms and Stokes’ problem. Numer. Math. 140 (2016) 327–371. [Google Scholar]
  20. N.D. Dos Santos, J.-F. Gerbeau and J.-F. Bourgat, A partitioned fluid–structure algorithm for elastic thin valves with contact. Comput. Methods Appl. Mech. Eng. 197 (2008) 1750–1761. [CrossRef] [Google Scholar]
  21. Q. Du, M.D. Gunzburger, L.S.H. Hou and J. Lee, Semidiscrete finite element approximations of a linear fluid-structure interaction problem. SIAM J. Numer. Anal. 42 (2004) 1–29. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Duprez and A. Lozinski, ø-FEM: a finite element method on domains defined by level-sets. SIAM J. Numer. Anal. 58 (2020) 1008–1028. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Duprez, V. Lleras and A. Lozinski, ø-FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations. ESAIM: M2AN 57 (2023) 1111–1142. [CrossRef] [EDP Sciences] [Google Scholar]
  24. A. Ern and J.-L. Guermond, Finite elements I—approximation and interpolation. In Vol. 72 of Texts in Applied Mathematics. Springer, Cham (2021). [Google Scholar]
  25. B. Fabrèges, A smooth extension method for the simulation of fluid/particles flows, Ph.D. thesis, Université Paris Sud - Paris XI (2012) (In French). [Google Scholar]
  26. B. Fabrèges and B. Maury, Approximation of single layer distributions by dirac masses in finite element computations. J. Sci. Comput. 58 (2014) 25–40. [CrossRef] [MathSciNet] [Google Scholar]
  27. L. Formaggia, J.-F. Gerbeau, F. Nobile and A. Quarteroni, Numerical treatment of defective boundary conditions for the Navier-Stokes equations. SIAM J. Numer. Anal. 40 (2002) 376–401. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Fournié and A. Lozinski, Stability and optimal convergence of unfitted extended finite element methods with Lagrange multipliers for the Stokes equations. In Geometrically Unfitted Finite Element Methods and Applications, edited by S.P.A. Bordas, E. Burman, M.G. Larson and M.A. Olshanskii. Springer International Publishing, Cham (2017) 143–182. [CrossRef] [Google Scholar]
  29. L.P. Franca and R. Stenberg, Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680–1697. [CrossRef] [MathSciNet] [Google Scholar]
  30. K.J. Galvin, A. Linke, L.G. Rebholz and N.E. Wilson, Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection. Comput. Methods Appl. Mech. Eng. 237/240 (2012) 166–176. [CrossRef] [Google Scholar]
  31. V. Girault and R. Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem. Jpn. J. Ind. Appl. Math. 12 (1995) 487–514. [CrossRef] [Google Scholar]
  32. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. In Vol. 5 Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). [CrossRef] [Google Scholar]
  33. R. Glowinski, T.W. Pan, T.I. Hesla and D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 25 (1999) 755–794. [CrossRef] [MathSciNet] [Google Scholar]
  34. P. Grisvard, Elliptic problems in nonsmooth domains. In Vol. 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner. [Google Scholar]
  35. S. Groß and A. Reusken, An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys. 224 (2007) 40–58. [CrossRef] [MathSciNet] [Google Scholar]
  36. J. Guzmán and M.A. Olshanskii, Inf-sup stability of geometrically unfitted Stokes finite elements. Math. Comput. 87 (2018) 2091–2112. [Google Scholar]
  37. J. Haslinger and Y. Renard, A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 47 (2009). [Google Scholar]
  38. T. Hisada and T. Washio, Mathematical considerations for fluid-structure interaction simulation of heart valves. Bull. Jpn. Soc. Ind. Appl. Math. 16 (2006) 142–156 (In Japanese). [Google Scholar]
  39. D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks and T.J.R. Hughes, An immerso-geometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Comput. Methods Appl. Mech. Eng. 284 (2015) 1005–1053. [CrossRef] [Google Scholar]
  40. M. Kirchhart, S. Groß and A. Reusken, Analysis of an XFEM discretization for Stokes interface problems. SIAM J. Sci. Comput. 38 (2016) A1019–A1043. [CrossRef] [Google Scholar]
  41. K. Li, N.M. Atallah, G.A. Main and G. Scovazzi, The shifted interface method: A flexible approach to embedded interface computations. Int. J. Numer. Methods Eng. 121 (2020) 492–518. [CrossRef] [Google Scholar]
  42. Y. Liu and W.K. Liu, Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220 (2006) 139–154. [CrossRef] [MathSciNet] [Google Scholar]
  43. H. Liu, M. Neilan and M. Olshanskii, A cutFEM divergence-free discretization for the Stokes problem. ESAIM: M2AN 57 (2023) 143–165. [CrossRef] [EDP Sciences] [Google Scholar]
  44. T. Nakata and H. Liu, A fluid–structure interaction model of insect flight with flexible wings. J. Comput. Phys. 231 (2012) 1822–1847. [CrossRef] [MathSciNet] [Google Scholar]
  45. P.A. Nguyen and J.-P. Raymond, Boundary stabilization of the Navier-Stokes equations in the case of mixed boundary conditions. SIAM J. Control Optim. 53 (2015) 3006–3039. [Google Scholar]
  46. K. Ohmori and N. Saito, Flux-free finite element method with Lagrange multipliers for two-fluid flows. J. Sci. Comput. 32 (2007) 147–173. [CrossRef] [MathSciNet] [Google Scholar]
  47. C.S. Peskin, The immersed boundary method. Acta Numer. 11 (2002) 479–517. [CrossRef] [MathSciNet] [Google Scholar]
  48. T. Sawada and A. Tezuka, LLM and X-FEM based interface modeling of fluid-thin structure interactions on a non-interface-fitted mesh. Comput. Mech. 48 (2011) 319–332. [CrossRef] [MathSciNet] [Google Scholar]
  49. R.L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  50. P. Singh, D.D. Joseph, T.I. Hesla, R. Glowinski and T.-W. Pan, A distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows. J. Nonnewton. Fluid Mech. 91 (2000) 165–188. [CrossRef] [Google Scholar]
  51. K. Takizawa and T.E. Tezduyar, Computational methods for parachute fluid–structure interactions. Arch. Comput. Methods Eng. 19 (2012) 125–169. [CrossRef] [MathSciNet] [Google Scholar]
  52. K. Takizawa, T.E. Tezduyar, A. Buscher and S. Asada, Space-time interface-tracking with topology change (ST-TC). Comput. Mech. 54 (2014) 955–971. [CrossRef] [MathSciNet] [Google Scholar]
  53. R. Van Loon, P.D. Anderson, F.P.T. Baaijens and F.N. Van de Vosse, A three-dimensional fluid–structure interaction method for heart valve modelling. Comptes Rendus Mécanique 333 (2005) 856–866. [CrossRef] [Google Scholar]
  54. F. Vergnet, Active structures in viscous flows: models, mathematical analysis and numerical simulations, Ph.D. thesis, Université Paris-Saclay (2019). [Google Scholar]
  55. G.D. Weymouth, D.G. Dommermuth, K. Hendrickson and D.K.P. Yue, Advancements in Cartesian-grid methods for computational ship hydrodynamics. In 26th Symposium on Naval Hydrodynamics (16/09/06 - 21/09/06), Rome, Italy (2006). [Google Scholar]
  56. A. Zilian and A. Legay, The enriched space-time finite element method (EST) for simultaneous solution of fluid-structure interaction. Int. J. Numer. Methods Eng. 75 (2008) 305–334. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you