Open Access
Volume 58, Number 1, January-February 2024
Page(s) 363 - 391
Published online 28 February 2024
  1. C. Berthon, Stability of the MUSCL schemes for the Euler equations. Commun. Math. Sci. 3 (2005) 133–157. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Berthon and V. Desveaux, An entropy preserving MOOD scheme for the Euler equations. Int. J. Finite. 11 (2014) 39. [Google Scholar]
  3. F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-balanced Schemes for Sources. Frontiers in Mathematics. Birkh¨auser Verlag, Basel (2004). [CrossRef] [Google Scholar]
  4. F. Bouchut, C. Bourdarias and B. Perthame, A MUSCL method satisfying all the numerical entropy inequalities. Math. Comput. 65 (1996) 1439–1461. [CrossRef] [Google Scholar]
  5. H. Burchard and H. Rennau, Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model. 20 (2008) 293–311. [CrossRef] [Google Scholar]
  6. C. Chalons and P.G. LeFloch, A fully discrete scheme for diffusive-dispersive conservation laws. Numer. Math. 89 (2001) 493–509. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Clain, S. Diot and R. Loubere, A high-order finite volume method for systems of conservation laws-multi-dimensional optimal order detection (mood). J. Comput. Phys. 230 (2011) 4028–4050. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Colella and P.R. Woodward, The piecewise parabolic method (ppm) for gas-dynamical simulations. J. Comput. Phys. 54 (1984) 174–201. [CrossRef] [Google Scholar]
  9. F. Coquel and P.G. LeFloch, An entropy satisfying MUSCL scheme for systems of conservation laws. Numer. Math. 74 (1996) 1–33. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Couderc, A. Duran and J.P. Vila, An explicit asymptotic preserving low froude scheme for the multilayer shallow water model with density stratification. J. Comput. Phys. 343 (2017) 235–270. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Diot, S. Clain and R. Loubere, Improved detection criteria for the multi-dimensional optimal order detection (mood) on unstructured meshes with very high-order polynomials. Comput. Fluids 64 (2012) 43–63. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Einfeldt, C. Munz, P.L. Roe and B. Sjogreen, On godunov-type methods near low-densities. J. Comput. Phys. 92 (1991) 273–295. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Fox-Kemper, A. Adcroft, C.W. Böning, E.P. Chassignet, E. Curchitser, G. Danabasoglu, C. Eden, M.H. England, R. Gerdes, R.J. Greatbatch and S.M. Griffies, Challenges and prospects in ocean circulation models. Front. Mar. Sci. 6 (2019) 65. [CrossRef] [Google Scholar]
  14. E. Godlewski and P.-A. Raviartm, Numerical approximation of hyperbolic systems of conservation laws, 2nd edition. In Vol. 118 of Applied Mathematical Sciences. Springer-Verlag, New York (2021). [CrossRef] [Google Scholar]
  15. A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes .1. SIAM J. Numer. Anal. 24 (1987) 279–309. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Hiltebrand and S. Mishra, Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126 (2014) 103–151. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.M. Holmes, J.D. Zika, S.M. Griffies, A.M.C.C. Hogg, A.E. Kiss and M.H. England, The geography of numerical mixing in a suite of global ocean models. J. Adv. Model. Earth Syst. 13 (2021) e2020MS002333. [CrossRef] [Google Scholar]
  18. K. Klingbeil, M. Mohammadi-Aragh, U. Graewe and H. Burchard, Quantification of spurious dissipation and mixing - discrete variance decay in a finite-volume framework. Ocean Model. 81 (2014) 49–64. [CrossRef] [Google Scholar]
  19. P. Lax and B. Wendroff, Systems of conservation laws. Commun. Pure Appl. Math. 13 (1960) 217–237. [CrossRef] [Google Scholar]
  20. L. Martaud, M. Badsi, C. Berthon, A. Duran and K. Saleh, Global entropy stability for class of unlimited high-order schemes for hyperbolic systems of conservation laws. Preprint: arXiv:hal-03206727 (2021). [Google Scholar]
  21. B. Perthame and C.W. Shu, On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73 (1996) 119–130. [CrossRef] [MathSciNet] [Google Scholar]
  22. P.L. Roe, Approximate riemann solvers, parameter vectors, and difference-schemes. J. Comput. Phys. 43 (1981) 357–372. [CrossRef] [MathSciNet] [Google Scholar]
  23. The Mathworks, Inc., Natick, Massachusetts. MATLAB version (R2021b) (2021). [Google Scholar]
  24. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition. A practical introduction, Springer-Verlag, Berlin (2009). [Google Scholar]
  25. B. Van Leer, Towards the ultimate conservative difference scheme. 5. 2nd-order sequel to Godunovs method. J. Comput. Phys. 32 (1979) 101–136. [CrossRef] [Google Scholar]
  26. X. Zhang and C.-W. Shu, Positivity-preserving high order finite difference weno schemes for compressible Euler equations. J. Comput. Phys. 231 (2012) 2245–2258. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you