Open Access
Issue
ESAIM: M2AN
Volume 58, Number 1, January-February 2024
Page(s) 273 - 302
DOI https://doi.org/10.1051/m2an/2023086
Published online 16 February 2024
  1. M. Ainsworth and R. Rankin, Technical note: a note on the selection of the penalty parameter for discontinuous Galerkin finite element schemes. Numer. Methods Part. Differ. Equ. 28 (2012) 1099–1104. [CrossRef] [Google Scholar]
  2. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. ESAIM: Math. Modell. Numer. Anal. 19 (1985) 7–32. [CrossRef] [EDP Sciences] [Google Scholar]
  3. L. Badea, M. Discacciati and A. Quarteroni, Numerical analysis of the Navier–Stokes/Darcy coupling. Numer. Math. 115 (2010) 195–227. [Google Scholar]
  4. G.S. Beavers and D.D. Joseph, Boundary conditions at a naturally impermeable wall. J. Fluid. Mech. 30 (1967) 197–207. [Google Scholar]
  5. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Verlag Berlin Heidelberg (2013). [CrossRef] [Google Scholar]
  6. A. Cesmelioglu and S. Rhebergen, A hybridizable discontinuous Galerkin method for the coupled Navier–Stokes and Darcy problem. J. Comput. Appl. Math. 422 (2023) 114923. [CrossRef] [Google Scholar]
  7. A. Cesmelioglu, V. Girault and B. Rivière, Time-dependent coupling of Navier–Stokes and Darcy flows. ESAIM: Math. Modell. Numer. Anal. 47 (2013) 539–554. [CrossRef] [EDP Sciences] [Google Scholar]
  8. A. Cesmelioglu, B. Cockburn and W. Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comput. 86 (2017) 1643–1670. [Google Scholar]
  9. A. Cesmelioglu, S. Rhebergen and G.N. Wells, An embedded–hybridized discontinuous Galerkin method for the coupled Stokes–Darcy system. J. Comput. Appl. Math. 367 (2020) 112476. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Çe¸smelioğlu and B. Rivière, Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow. J. Numer. Math. 16 (2008) 249–280. [MathSciNet] [Google Scholar]
  11. A. Çe¸smelioğlu and B. Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40 (2009) 115–140. [CrossRef] [MathSciNet] [Google Scholar]
  12. N. Chaabane, V. Girault, C. Puelz and B. Riviere, Convergence of IPDG for coupled time-dependent Navier–Stokes and Darcy equations. J. Comput. Appl. Math. 324 (2017) 25–48. [CrossRef] [MathSciNet] [Google Scholar]
  13. P. Chidyagwai and B. Rivière, On the solution of the coupled Navier–Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198 (2009) 3806–3820. [CrossRef] [Google Scholar]
  14. P. Chidyagwai and B. Rivière, Numerical modelling of coupled surface and subsurface flow systems. Adv. Water Res. 33 (2010) 92–105. [CrossRef] [Google Scholar]
  15. B. Cockburn, G. Kanschat and D. Schötzau, A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74 (2004) 1067–1095. [CrossRef] [Google Scholar]
  16. B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [Google Scholar]
  17. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Mathématiques et Applications. Springer, Verlag Berlin Heidelberg (2012). [CrossRef] [Google Scholar]
  18. M. Discacciati and R. Oyarzúa, A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem. Numer. Math. 135 (2017) 571–606. [Google Scholar]
  19. M. Discacciati and A. Quarteroni, Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Math. Compplut. 22 (2009) 315–426. [Google Scholar]
  20. A. Ern and J.-L. Guermond, Finite Elements I. Vol. 72 of Texts in Applied Mathematics. Springer Nature Switzerland (2021). [Google Scholar]
  21. G. Fu and C. Lehrenfeld, A strongly conservative hybrid DG/mixed FEM for the coupling of Stokes and Darcy flow. J. Sci. Comput. 77 (2018) 1605–1620. [Google Scholar]
  22. V. Girault and B. Rivière, DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47 (2009) 2052–2089. [CrossRef] [MathSciNet] [Google Scholar]
  23. V. Girault, G. Kanschat and B. Rivière, On the coupling of incompressible Stokes or Navier–Stokes and Darcy flows through porous media, in Modelling and Simulation in Fluid Dynamics in Porous Media. Springer (2013) 1–25. [Google Scholar]
  24. J.S. Howell and N.J. Walkington, Inf-sup conditions for twofold saddle point problems. Numer. Math. 118 (2011) 663–693. [CrossRef] [MathSciNet] [Google Scholar]
  25. X. Jia, J. Li and H. Jia, Decoupled characteristic stabilized finite element method for time-dependent Navier–Stokes/Darcy model. Numer. Methods Part. Differ. Equ. 35 (2019) 267–294. [Google Scholar]
  26. V. John, Finite Element Methods for Incompressible Flow Problems. Vol. 51 of Springer Series in Computational Mathematics. Springer (2016). [CrossRef] [Google Scholar]
  27. V. John, A. Linke, C. Merdon, M. Neilan and L.G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59 (2017) 492–544. [CrossRef] [MathSciNet] [Google Scholar]
  28. G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229 (2010) 5933–5943. [CrossRef] [MathSciNet] [Google Scholar]
  29. W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows. Society for Industrial and Applied Mathematics, Philadelphia, PA (2008). [Google Scholar]
  30. J.J. Lee, K. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput. 39 (2017) A1–A24. [CrossRef] [Google Scholar]
  31. C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307 (2016) 339–361. [CrossRef] [Google Scholar]
  32. A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268 (2014) 782–800. [CrossRef] [Google Scholar]
  33. A. Linke, C. Merdon, M. Neilan and F. Neumann, Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem. Math. Comput. 87 (2018) 1543–1566. [CrossRef] [Google Scholar]
  34. C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75 (2006) 1659–1674. [Google Scholar]
  35. S. Rhebergen and G.N. Wells, A hybridizable discontinuous Galerkin method for the Navier–Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76 (2018) 1484–1501. [CrossRef] [MathSciNet] [Google Scholar]
  36. S. Rhebergen and G.N. Wells, An embedded–hybridized discontinuous Galerkin finite element method for the Stokes equations. Comput. Methods Appl. Mech. Eng. 358 (2020) 112619. [CrossRef] [Google Scholar]
  37. B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Vol. 35 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008). [Google Scholar]
  38. P. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50 (1971) 292–315. [Google Scholar]
  39. J. Schöberl, An advancing front 2D/3D-mesh generator based on abstract rules. J. Comput. Visual Sci. 1 (1997) 41–52. [CrossRef] [Google Scholar]
  40. J. Schöberl, C++11 implementation of finite elements in NGSolve. Technical Report ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014). [Google Scholar]
  41. J. Wang and X. Ye, New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal. 45 (2007) 1269–1286. [CrossRef] [MathSciNet] [Google Scholar]
  42. G.N. Wells, Analysis of an interface stabilized finite element method: the advection–diffusion–reaction equation. SIAM J. Numer. Anal. 49 (2011) 87–109. [CrossRef] [MathSciNet] [Google Scholar]
  43. D. Xue and Y. Hou, Numerical analysis of a second order algorithm for a non-stationary Navier–Stokes/Darcy model. J. Comput. Appl. Math. 369 (2020) 112579. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you