Open Access
Volume 58, Number 1, January-February 2024
Page(s) 107 - 130
Published online 31 January 2024
  1. G. Acosta and R.G. Durán, The maximum angle condition for mixed and nonconforming elements: Application to the stokes equations. SIAM J. Numer. Anal. 37 (1999) 18–36. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Bänsch, Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math. 88 (2001) 203–235. [Google Scholar]
  3. G.R. Barrenechea and J. Blasco, Pressure stabilization of finite element approximations of time-dependent incompressible flow problems. Comput. Methods Appl. Mech. Eng. 197 (2007) 219–231. [CrossRef] [Google Scholar]
  4. J.T. Beale, Large-time regularity of viscous surface waves. Arch. Ration Mech. Anal. 84 (1984) 307–352. [CrossRef] [Google Scholar]
  5. J. Blasco and R. Codina, Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier-Stokes equations. Appl. Numer. Math. 38 (2001) 475–497. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.F. Blumberg and G.L. Mellor, A description of a three-dimensional coastal ocean circulation model. Three-dimensional coastal ocean models 4 (1987) 1–16. [CrossRef] [Google Scholar]
  7. P.B. Bochev, M.D. Gunzburger and J.N. Shadid, On inf–sup stabilized finite element methods for transient problems. Comput. Methods Appl. Mech. Eng. 193 (2004) 1471–1489. [CrossRef] [Google Scholar]
  8. R.G. Dean and R.A. Dalrymple, Water Wave Mechanics for Engineers and Scientists, Vol. 2. World Scientific Publishing Company (1991). [CrossRef] [Google Scholar]
  9. A. Decoene, Hydrostatic model for three-dimensional free surface flows and numerical schemes, Ph.D. thesis, Université Pierre et Marie Curie - Paris VI, Laboratoire Jacques-Louis Lions (2006). [Google Scholar]
  10. A. Decoene and J.-F. Gerbeau, Ko transformation and ALE formulation for three-dimensional free surface flows. Int. J. Numer. Methods Fluids 59 (2009) 357–386. [CrossRef] [Google Scholar]
  11. A. Decoene and B. Maury, Moving meshes with freefem++. J. Numer. Math. 20 (2012) 195–214. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Duarte, R. Gormaz and S. Natesan, Arbitrary lagrangian–eulerian method for Navier-Stokes equations with moving boundaries. Comput. Methods Appl. Mech. Eng. 193 (2004) 4819–4836. [CrossRef] [Google Scholar]
  13. A. Ern and J.-L. Guermond, Finite elements I—Approximation and interpolation. In Vol. 72 of Texts in Applied Mathematics. Springer, Cham (2021). [Google Scholar]
  14. D. Garg, A. Longo and P. Papale, Modeling free surface flows using stabilized finite element method. Math. Probl. Eng. 2018 (2018) 9. [CrossRef] [Google Scholar]
  15. P.H. Gaskell, M.D. Savage, J.L. Summers and H.M. Thompson, Modelling and analysis of meniscus roll coating. J. Fluid Mech. 298 (1995) 113–137. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.-F. Gerbeau, T. Lelièvre and C. Le Bris, Simulations of mhd flows with moving interfaces. J. Comput. Phys. 184 (2003) 163–191. [CrossRef] [MathSciNet] [Google Scholar]
  17. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms. In Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). [Google Scholar]
  18. Y. Guo and I. Time, Local well-posedness of the viscous surface wave problem without surface tension. Anal. PDE 6 (2013) 287–369. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.M. Hervouet, Hydrodynamics of Free Surface Flows, Modelling with Finite Element Method. John Wiley & Sons Ltd (2007). [CrossRef] [Google Scholar]
  20. J.G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. [CrossRef] [MathSciNet] [Google Scholar]
  21. C.W. Hirt, A.A. Amsden and J.L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14 (1974) 227–253. [CrossRef] [Google Scholar]
  22. M.B. Koçyigit, R.A. Falconer and B. Lin, Three-dimensional numerical modelling of free surface flows with non-hydrostatic pressure. Int. J. Numer. Methods Fluids 40 (2002) 1145–1162. [CrossRef] [Google Scholar]
  23. E.V. Laitone, The second approximation to cnoidal and solitary waves. J. Fluid Mech. 9 (1960) 430–444. [CrossRef] [MathSciNet] [Google Scholar]
  24. C.-L. Lin, H. Lee, T. Lee and L.J. Weber, A level set characteristic galerkin finite element method for free surface flows. Int. J. Numer. Methods Fluids 49 (2005) 521–547. [CrossRef] [Google Scholar]
  25. N. Masmoudi and F. Rousset, Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations. Arch. Ration. Mech. Anal. 223 (2017) 301–417. [CrossRef] [MathSciNet] [Google Scholar]
  26. B. Maury, Characteristics ale method for the unsteady 3d Navier-Stokes equations with a free surface. Int. J. Comput. Fluid Dyn. 6 (1996) 175–188. [CrossRef] [Google Scholar]
  27. F. Nobile and L. Formaggia, A stability analysis for the arbitrary lagrangian eulerian formulation with finite elements. East-West J. Numer. Math. 7 (1999) 105–132. [MathSciNet] [Google Scholar]
  28. N.A. Phillips, A coordinate system having some special advantages for numerical forecasting. J. Meteorol. 14 (1957) 184–185. [CrossRef] [Google Scholar]
  29. M. Picasso, J. Rappaz, A. Reist, M. Funk and H. Blatter, Numerical simulation of the motion of a two-dimensional glacier. Int. J. Numer. Methods Eng. 60 (2004) 995–1009. [CrossRef] [Google Scholar]
  30. S. Popinet and S. Zaleski, A front-tracking algorithm for accurate representation of surface tension. Int. J. Numer. Methods Fluids 30 (1999) 775–793. [CrossRef] [Google Scholar]
  31. O. Reynolds, A.W. Brightmore and W.H. Moorby, Papers on Mechanical and Physical Subjects: The sub-mechanics of the universe, Vol. 3. The University Press (1903). [Google Scholar]
  32. J. San Martín, L. Smaranda and T. Takahashi, Convergence of a finite element/ale method for the stokes equations in a domain depending on time. J. Comput. Appl. Math. 230 (2009) 521–545. [CrossRef] [MathSciNet] [Google Scholar]
  33. J. Sarrate, A. Huerta and J. Donea, Arbitrary lagrangian-eulerian formulation for fluid–rigid body interaction. Comput. Methods Appl. Mech. Eng. 190 (2001) 3171–3188. [CrossRef] [Google Scholar]
  34. A. Schmidt, Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125 (1996) 293–312. [CrossRef] [Google Scholar]
  35. N.J. Shankar, H.F. Cheong and S. Sankaranarayanan, Multilevel finite-difference model for three-dimensional hydrodynamic circulation. Ocean Eng. 24 (1997) 785–816. [CrossRef] [Google Scholar]
  36. A.F. Shchepetkin and J.C. McWilliams, The regional ocean model system (ROMS): A split-explicit, free-surface, topography-following coordinate ocean model. ocean model. 9 (2005) 347–404. [CrossRef] [Google Scholar]
  37. Y. Song and D. Haidvogel, A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys. 115 (1994) 228–244. [CrossRef] [MathSciNet] [Google Scholar]
  38. S. Tanaka and K. Kashiyama, Ale finite element method for fsi problems with free surface using mesh re-generation method based on background mesh. Int. J. Comput. Fluid Dyn. 20 (2006) 229–236. [CrossRef] [Google Scholar]
  39. A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface. Arch. Ration. Mech. Anal. 133 (1996) 299–331. [CrossRef] [Google Scholar]
  40. C. Telemac-Mascaret, Telemac 3d : Validation Manual. Technical Report, (2021). [Google Scholar]
  41. M.A. Walkley, P.H. Gaskell, P.K. Jimack, M.A. Kelmanson, J.L. Summers and M.C.T. Wilson, On the calculation of normals in free-surface flow problems. Commun. Numer. Methods Eng. 20 (2004) 343–351. [CrossRef] [Google Scholar]
  42. J. Zhou and P. Stansby, An arbitrary lagrangian-eulerian (ales) model with non-hydrostatic pressure for shallow-water flows. Comput. Methods Appl. Mech. Eng. 178 (1999) 199–214. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you