Open Access
Issue
ESAIM: M2AN
Volume 58, Number 3, May-June 2024
Page(s) 1053 - 1085
DOI https://doi.org/10.1051/m2an/2024011
Published online 18 June 2024
  1. I. Alonso-Mallo, B. Cano and N. Reguera, Analysis of order reduction when integrating linear initial boundary value problems with Lawson methods. Appl. Numer. Math. 118 (2017) 64–74. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Alonso-Mallo, B. Cano and N. Reguera, Avoiding order reduction when integrating linear initial boundary value problems with Lawson methods. IMA J. Numer. Anal. 37 (2017) 2091–2119. [MathSciNet] [Google Scholar]
  3. I. Alonso-Mallo, B. Cano and N. Reguera, Avoiding order reduction when integrating reaction-diffusion boundary value problems with exponential splitting methods. J. Comput. Appl. Math. 357 (2019) 228–250. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Cano and M.J. Moreta, Exponential quadrature rules without order reduction for integrating linear initial boundary value problems. SIAM J. Num. Anal. 56 (2018) 1187–1209. [Google Scholar]
  5. B. Cano and N. Reguera, CMMSE: analysis of order reduction when Lawson methods integrate nonlinear initial boundary value problems. Math. Methods Appl. Sci. 45 (2022) 11319–11330. [CrossRef] [MathSciNet] [Google Scholar]
  6. B. Cano and N. Reguera, How to avoid order reduction when Lawson methods integrate nonlinear initial boundary value problems. BIT Numer. Math. 62 (2022) 431–463. [CrossRef] [Google Scholar]
  7. J. Connors, J.W. Banks, J.A. Hittinger and C.S. Woodward, Quantification of errors for operator-split advection-diffusion calculations. Comput. Methods Appl. Mech. Eng. 272 (2014) 181–197. [CrossRef] [Google Scholar]
  8. L. Einkemmer and A. Ostermann, Overcoming order reduction in diffusion-reaction splitting. Part 1: Dirichlet boundary conditions. SIAM J. Sci. Comput. 37 (2015) A1577–A1592. [Google Scholar]
  9. L. Einkemmer and A. Ostermann, Overcoming order reduction in diffusion-reaction splitting. Part 2: oblique boundary conditions. SIAM J. Sci. Comput. 38 (2016) A3471–A3757. [Google Scholar]
  10. E. Faou, A. Ostermann and K. Schratz, Analysis of exponential splitting methods for inhomogenoous parabolic equations. IMA J. Numer. Anal. 35 (2015) 161–178. [CrossRef] [MathSciNet] [Google Scholar]
  11. T. Göckler and V. Grimm, Convergence analysis of an extended Krylov subspace method for the approximation of operator functions in exponential integratiors. SIAM J. Numer. Anal. 53 (2013) 2189–2213. [Google Scholar]
  12. E. Hairer, S. Nörsett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd revised edition. Springer (2000). [Google Scholar]
  13. M. Hochbruck and A. Ostermann, Exponential Runge–Kutta methods for parabolic problems. Appl. Numer. Math. 53 (2005) 323–339. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Hochbruck and A. Ostermann, Explicit exponential Runge–Kutta methods for semilinear parabolic problems. SIAM J. Num. Anal. 43 (2005) 1069–1090. [Google Scholar]
  15. M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numer. 19 (2010) 209–286. [CrossRef] [MathSciNet] [Google Scholar]
  16. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press (1992). [Google Scholar]
  17. S. Krogstad, Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203 (2005) 72–88. [Google Scholar]
  18. J.D. Lawson, Generalized Runge–Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4 (1967) 372–380. [Google Scholar]
  19. R.J. LeVeque and J. Oliger, Numerical methods based on additive splittings for hyperbolic partial differential equations. Math. Comput. 40 (1983) 469–497. [CrossRef] [Google Scholar]
  20. V.T. Luan and A. Ostermann, Stiff order conditions for exponential Runge–Kutta methods of order five, in Modeling, Simulation and Optimization of Complex Processes-HPSC. Springer (2012) 133–143. [Google Scholar]
  21. V.T. Luan and A. Ostermann, Explicit exponential Runge–Kutta methods of high order for parabolic problems. J. Comput. Appl. Math. 262 (2014) 361–372. [CrossRef] [MathSciNet] [Google Scholar]
  22. B.V. Minchev and W.M. Wright, A review of exponential integrators for first order semi-linear problems. Preprint NTNU-N-2005-2 (2005). [Google Scholar]
  23. J. Niesen and W.M. Wright, Algorithm 919: a Krylov subspace algorithm for evaluating the φ-functions appearing in exponential integrators. ACM Trans. Math. Softw. 38 (2012) 1–19. [CrossRef] [Google Scholar]
  24. J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations. Wadsworth & Brooks, USA (1989). [Google Scholar]
  25. B. Cano & M. J. Moreta, Matlab Code for “Solving reaction-diffusion problems with explicit exponential Runge-Kutta methods without order reduction”, https://github.com/mjmoreta/EERK-methods. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you