Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 4, July-August 2024
|
|
---|---|---|
Page(s) | 1317 - 1346 | |
DOI | https://doi.org/10.1051/m2an/2024032 | |
Published online | 30 July 2024 |
- K. Abiko and T. Ishiwata, Positivity-preserving numerical schemes for stochastic differential equations. Jpn. J. Ind. Appl. Math. 39 (2022) 1095–1108. [CrossRef] [MathSciNet] [Google Scholar]
- R. Anton, D. Cohen and L. Quer-Sardanyons, A fully discrete approximation of the one-dimensional stochastic heat equation. IMA J. Numer. Anal. 40 (2020) 247–284. [CrossRef] [MathSciNet] [Google Scholar]
- V. Barbu and M. Röckner, A splitting algorithm for stochastic partial differential equations driven by linear multiplicative noise. Stoch. Partial Differ. Equ. Anal. Comput. 5 (2017) 457–471. [MathSciNet] [Google Scholar]
- A. Barth and A. Lang, Simulation of stochastic partial differential equations using finite element methods. Stochastics 84 (2012) 217–231. [CrossRef] [MathSciNet] [Google Scholar]
- A. Barth and A. Lang, Lp and almost sure convergence of a Milstein scheme for stochastic partial differential equations. Stochastic Process. Appl. 123 (2013) 1563–1587. [CrossRef] [MathSciNet] [Google Scholar]
- C. Bauzet, F. Nabet, K. Schmitz and A. Zimmermann, Convergence of a finite-volume scheme for a heat equation with a multiplicative Lipschitz noise. ESAIM: M2AN 57 (2023) 745–783. [CrossRef] [EDP Sciences] [Google Scholar]
- C. Bayer and H. Oberhauser, Splitting methods for SPDEs: from robustness to financial engineering, optimal control, and nonlinear filtering, in Splitting Methods in Communication, Imaging, Science, and Engineering. Sci. Comput. Springer, Cham (2016) 499–539. [Google Scholar]
- F.E. Benth, On the positivity of the stochastic heat equation. Potential Anal. 6 (1997) 127–148. [CrossRef] [MathSciNet] [Google Scholar]
- A. Berg, D. Cohen and G. Dujardin, Lie–Trotter splitting for the nonlinear stochastic Manakov system. J. Sci. Comput. 88 (2021) 6. [CrossRef] [Google Scholar]
- S. Blanes and F. Casas, A Concise Introduction to Geometric Numerical Integration. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL (2016). [Google Scholar]
- M. Bossy, J.-F. Jabir and K. Martínez, On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth. Bernoulli 27 (2021) 312–347. [CrossRef] [MathSciNet] [Google Scholar]
- C.-E. Bréhier and D. Cohen, Strong rates of convergence of a splitting scheme for Schrödinger equations with nonlocal interaction cubic nonlinearity and white noise dispersion. SIAM/ASA J. Uncertain. Quantif. 10 (2022) 453–480. [CrossRef] [MathSciNet] [Google Scholar]
- C.-E. Bréhier and D. Cohen, Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations. Appl. Numer. Math. 186 (2023) 57–83. [CrossRef] [MathSciNet] [Google Scholar]
- C.-E. Bréhier and L. Goudenège, Weak convergence rates of splitting schemes for the stochastic Allen–Cahn equation. BIT 60 (2020) 543–582. [CrossRef] [MathSciNet] [Google Scholar]
- C.-E. Bréhier, J. Cui and J. Hong, Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen–Cahn equation. IMA J. Numer. Anal. 39 (2019) 2096–2134. [CrossRef] [MathSciNet] [Google Scholar]
- C.-E. Bréhier, D. Cohen and J. Ulander, Positivity-preserving schemes for some nonlinear stochastic PDEs, in Sixteenth International Conference Zaragoza-Pau on Mathematics and its Applications. Vol. 43 of Monogr. Mat. García Galdeano. Prensas Univ. Zaragoza, Zaragoza (2024) 31–40. [Google Scholar]
- C.-E. Bréhier, D. Cohen and G. Giordano, Splitting schemes for FitzHugh–Nagumo stochastic partial differential equations. Discrete Contin. Dyn. Syst. Ser. B 29 (2024) 214–244. [CrossRef] [MathSciNet] [Google Scholar]
- O. Butkovsky, K. Dareiotis and M. Gerencsér, Optimal rate of convergence for approximations of SPDEs with nonregular drift. SIAM J. Numer. Anal. 61 (2023) 1103–1137. [CrossRef] [MathSciNet] [Google Scholar]
- R.A. Carmona and S.A. Molchanov, Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994) viii+125. [Google Scholar]
- L. Chen and J. Huang, Comparison principle for stochastic heat equation on Rd. Ann. Probab. 47 (2019) 989–1035. [MathSciNet] [Google Scholar]
- L. Chen and K. Kim, On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations. Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017) 358–388. [MathSciNet] [Google Scholar]
- Cohen, Codes for the paper Analysis of a positivity-preserving splitting scheme for some semilinear stochastic heat equations. Zenodo. https://doi.org/10.5281/zenodo.10300733 (2023). [Google Scholar]
- S. Cox and J. van Neerven, Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems. SIAM J. Numer. Anal. 48 (2010) 428–451. [CrossRef] [MathSciNet] [Google Scholar]
- S. Cox and J. van Neerven, Pathwise Hölder convergence of the implicit-linear Euler scheme for semi-linear SPDEs with multiplicative noise. Numer. Math. 125 (2013) 259–345. [CrossRef] [MathSciNet] [Google Scholar]
- J. Cresson, M. Efendiev and S. Sonner, On the positivity of solutions of systems of stochastic PDEs. ZAMM Z. Angew. Math. Mech. 93 (2013) 414–422. [CrossRef] [MathSciNet] [Google Scholar]
- J. Cui, J. Hong, Z. Liu and W. Zhou, Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. J. Differ. Equ. 266 (2019) 5625–5663. [CrossRef] [Google Scholar]
- G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2nd edition. Vol. 152 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2014). [Google Scholar]
- R. Dalang, D. Khoshnevisan, C. Mueller, D. Nualart and Y. Xiao, A Minicourse on Stochastic Partial Differential Equations, edited by D. Khoshnevisan and F. Rassoul-Agha. Vol. 1962 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2009). Held at the University of Utah, Salt Lake City, UT, May 8–19, 2006. [Google Scholar]
- A.M. Davie and J.G. Gaines, Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations. Math. Comp. 70 (2001) 121–134. [Google Scholar]
- A. Deya, Numerical schemes for rough parabolic equations. Appl. Math. Optim. 65 (2012) 253–292. [CrossRef] [MathSciNet] [Google Scholar]
- A. Deya and R. Marty, A full discretization of the rough fractional linear heat equation. Electron. J. Probab. 27 (2022) 122. [CrossRef] [Google Scholar]
- R. Duboscq and R. Marty, Analysis of a splitting scheme for a class of random nonlinear partial differential equations. ESAIM Probab. Stat. 20 (2016) 572–589. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- U. Erdoğan and G.J. Lord, A new class of exponential integrators for SDEs with multiplicative noise. IMA J. Numer. Anal. 39 (2019) 820–846. [CrossRef] [MathSciNet] [Google Scholar]
- L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications. John Wiley & Sons, Incorporated, New York (2000). [CrossRef] [Google Scholar]
- M. Gerencsér and I. Gyöngy, Finite difference schemes for stochastic partial differential equations in Sobolev spaces. Appl. Math. Optim. 72 (2015) 77–100. [CrossRef] [MathSciNet] [Google Scholar]
- W. Grecksch and H. Lisei, Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method. Stoch. Anal. Appl. 31 (2013) 314–335. [CrossRef] [MathSciNet] [Google Scholar]
- I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal. 9 (1998) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
- I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11 (1999) 1–37. [CrossRef] [MathSciNet] [Google Scholar]
- I. Gyöngy and A. Millet, Accelerated finite elements schemes for parabolic stochastic partial differential equations. Stoch. Partial Differ. Equ. Anal. Comput. 8 (2020) 580–624. [MathSciNet] [Google Scholar]
- I. Gyöngy and D. Nualart, Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise. Stoch. Process. Appl. 58 (1995) 57–72. [CrossRef] [Google Scholar]
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Vol. 31 of Springer Series in Computational Mathematics. Springer, Heidelberg (2010). Structure-preserving algorithms for ordinary differential equations, Reprint of the second (2006) edition. [Google Scholar]
- N. Halidias, Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete Contin. Dyn. Syst. Ser. B 20 (2015) 153–160. [MathSciNet] [Google Scholar]
- N. Halidias and I.S. Stamatiou, Boundary preserving explicit scheme for the A¨ıt-Sahalia model. Discrete Contin. Dyn. Syst. Ser. B 28 (2023) 648–664. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hausenblas, Approximation for semilinear stochastic evolution equations. Potential Anal. 18 (2003) 141–186. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hutzenthaler and A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Amer. Math. Soc. 236 (2015) v+99. [Google Scholar]
- A. Jentzen and P.E. Kloeden, The numerical approximation of stochastic partial differential equations. Milan J. Math. 77 (2009) 205–244. [CrossRef] [MathSciNet] [Google Scholar]
- A. Jentzen and P.E. Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 465 (2009) 649–667. [MathSciNet] [Google Scholar]
- D. Khoshnevisan, Analysis of Stochastic Partial Differential Equations. Vol. 119 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2014). [CrossRef] [Google Scholar]
- M. Kovács, S. Larsson and F. Lindgren, Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise. Numer. Algorithms 53 (2010) 309–320. [CrossRef] [MathSciNet] [Google Scholar]
- R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Vol. 2093 of Lecture Notes in Mathematics. Springer, Cham (2014). [CrossRef] [Google Scholar]
- Z. Lei, S. Gan and Z. Chen, Strong and weak convergence rates of logarithmic transformed truncated EM methods for SDEs with positive solutions. J. Comput. Appl. Math. 419 (2023) 114758. [CrossRef] [Google Scholar]
- Y. Li, C.-W. Shu and S. Tang, A local discontinuous Galerkin method for nonlinear parabolic SPDEs. ESAIM: M2AN 55 (2021) S187–S223. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Liu, A mass-preserving splitting scheme for the stochastic Schrödinger equation with multiplicative noise. IMA J. Numer. Anal. 33 (2013) 1469–1479. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Liu and Z. Qiao, Strong approximation of monotone stochastic partial differential equations driven by white noise. IMA J. Numer. Anal. 40 (2020) 1074–1093. [CrossRef] [MathSciNet] [Google Scholar]
- G.J. Lord and T. Shardlow, Postprocessing for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 45 (2007) 870–889. [CrossRef] [MathSciNet] [Google Scholar]
- G.J. Lord and A. Tambue, Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise. IMA J. Numer. Anal. 33 (2013) 515–543. [CrossRef] [MathSciNet] [Google Scholar]
- G.J. Lord and A. Tambue, Stochastic exponential integrators for a finite element discretisation of SPDEs with additive noise. Appl. Numer. Math. 136 (2019) 163–182. [CrossRef] [MathSciNet] [Google Scholar]
- G.J. Lord, C.E. Powell and T. Shardlow, An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York (2014). [Google Scholar]
- X. Mao, F. Wei and T. Wiriyakraikul, Positivity preserving truncated Euler–Maruyama method for stochastic Lotka–Volterra competition model. J. Comput. Appl. Math. 394 (2021) 113566. [CrossRef] [Google Scholar]
- R. Marty, On a splitting scheme for the nonlinear Schrödinger equation in a random medium. Commun. Math. Sci. 4 (2006) 679–705. [CrossRef] [MathSciNet] [Google Scholar]
- R. Marty, Local error of a splitting scheme for a nonlinear Schrödinger-type equation with random dispersion. Commun. Math. Sci. 19 (2021) 1051–1069. [CrossRef] [MathSciNet] [Google Scholar]
- R.I. McLachlan and G.R.W. Quispel, Splitting methods. Acta Numer. 11 (2002) 341–434. [CrossRef] [MathSciNet] [Google Scholar]
- A. Millet and P.-L. Morien, On implicit and explicit discretization schemes for parabolic SPDEs in any dimension. Stoch. Process. Appl. 115 (2005) 1073–1106. [CrossRef] [Google Scholar]
- G.R. Moreno Flores, On the (strict) positivity of solutions of the stochastic heat equation. Ann. Probab. 42 (2014) 1635–1643. [CrossRef] [MathSciNet] [Google Scholar]
- C. Mueller, On the support of solutions to the heat equation with noise. Stoch. Stoch. Rep. 37 (1991) 225–245. [CrossRef] [Google Scholar]
- J.D. Mukam and A. Tambue, A note on exponential Rosenbrock–Euler method for the finite element discretization of a semilinear parabolic partial differential equation. Comput. Math. Appl. 76 (2018) 1719–1738. [CrossRef] [MathSciNet] [Google Scholar]
- J.D. Mukam and A. Tambue, Strong convergence analysis of the stochastic exponential Rosenbrock scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noise. J. Sci. Comput. 74 (2018) 937–978. [CrossRef] [MathSciNet] [Google Scholar]
- T. Müller-Gronbach and K. Ritter, An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise. BIT 47 (2007) 393–418. [CrossRef] [MathSciNet] [Google Scholar]
- J.L. Padgett and Q. Sheng, Convergence of an operator splitting scheme for abstract stochastic evolution equations, in Advances in Mathematical Methods and High Performance Computing. Vol. 41 of Adv. Mech. Math. Springer, Cham (2019) 163–179. [CrossRef] [Google Scholar]
- R. Pettersson and M. Signahl, Numerical approximation for a white noise driven SPDE with locally bounded drift. Potential Anal. 22 (2005) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
- J. Printems, On the discretization in time of parabolic stochastic partial differential equations. ESAIM: M2AN 35 (2001) 1055–1078. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Ryzhik, Lecture notes for Introduction to SPDE, spring 2016. http://math.stanford.edu/~ryzhik/notes-spde-spr16.pdf (May 2016). [Google Scholar]
- C. Scalone, Positivity preserving stochastic θ-methods for selected SDEs. Appl. Numer. Math. 172 (2022) 351–358. [CrossRef] [MathSciNet] [Google Scholar]
- H. Schurz, Basic concepts of numerical analysis of stochastic differential equations explained by balanced implicit theta methods, in Stochastic Differential Equations and Processes. Vol. 7 of Springer Proc. Math. Springer, Heidelberg (2012) 1–139. [Google Scholar]
- T. Shardlow, Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optim. 20 (1999) 121–145. [CrossRef] [MathSciNet] [Google Scholar]
- T. Shiga, Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math. 46 (1994) 415–437. [CrossRef] [MathSciNet] [Google Scholar]
- L. Szpruch, X. Mao, D.J. Higham and J. Pan, Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model. BIT 51 (2011) 405–425. [CrossRef] [MathSciNet] [Google Scholar]
- G. Tessitore and J. Zabczyk, Strict positivity for stochastic heat equations. Stoch. Process. Appl. 77 (1998) 83–98. [CrossRef] [Google Scholar]
- I. Tubikanec, M. Tamborrino, P. Lansky and E. Buckwar, Qualitative properties of different numerical methods for the inhomogeneous geometric Brownian motion. J. Comput. Appl. Math. 406 (2022) 113951. [CrossRef] [Google Scholar]
- C. von Hallern and A. Rößler, An analysis of the Milstein scheme for SPDEs without a commutative noise condition, in Monte Carlo and Quasi-Monte Carlo Methods. Vol. 324 of Springer Proc. Math. Stat. Springer, Cham (2020) 503–521. [Google Scholar]
- J.B. Walsh, An introduction to stochastic partial differential equations, in École d’été de probabilités de Saint-Flour, XIV—1984. Vol. 1180 of Lecture Notes in Math. Springer, Berlin (1986) 265–439. [CrossRef] [Google Scholar]
- J.B. Walsh, Finite element methods for parabolic stochastic PDE’s. Potential Anal. 23 (2005) 1–43. [CrossRef] [MathSciNet] [Google Scholar]
- X. Wang, Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise. IMA J. Numer. Anal. 37 (2017) 965–984. [MathSciNet] [Google Scholar]
- X. Wang and S. Gan, A Runge–Kutta type scheme for nonlinear stochastic partial differential equations with multiplicative trace class noise. Numer. Algorithms 62 (2013) 193–223. [CrossRef] [MathSciNet] [Google Scholar]
- X. Wang and R. Qi, A note on an accelerated exponential Euler method for parabolic SPDEs with additive noise. Appl. Math. Lett. 46 (2015) 31–37. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise. BIT 44 (2004) 829–847. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43 (2005) 1363–1384. [Google Scholar]
- X. Yang, Z. Yang and C. Zhang, Stochastic heat equation: numerical positivity and almost surely exponential stability. Comput. Math. Appl. 119 (2022) 312–318. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.