Open Access
Issue
ESAIM: M2AN
Volume 58, Number 4, July-August 2024
Page(s) 1461 - 1495
DOI https://doi.org/10.1051/m2an/2024045
Published online 27 August 2024
  1. I. Ambartsumyan, E. Khattatov, I. Yotov and P. Zunino, A Lagrange multiplier method for a Stokes–Biot fluid-poroelastic structure interaction model. Numer. Math. 140 (2018) 513–553. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Ambartsumyan, V.J. Ervin, T. Nguyen and I. Yotov, A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poroelastic media. ESAIM Math. Model. Numer. Anal. 53 (2019) 1915–1955. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. S. Badia, A. Quaini and A. Quarteroni, Coupling Biot and Navier–Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys. 228 (2009) 7986–8014. [CrossRef] [MathSciNet] [Google Scholar]
  4. G.S. Beavers and D.D. Joseph, Boundary conditions at a naturally impermeable wall. J. Fluid. Mech. 30 (1967) 197–207. [Google Scholar]
  5. E.A. Bergkamp, C.V. Verhoosel, J.J.C. Remmers and D.M.J. Smeulders, A staggered finite element procedure for the coupled Stokes–Biot system with fluid entry resistance. Comput. Geosci. 24 (2020) 1497–1522. [CrossRef] [MathSciNet] [Google Scholar]
  6. M.A. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155–164. [Google Scholar]
  7. M.A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26 (1955) 182–185. [Google Scholar]
  8. M.A. Biot and D.G. Willis, The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24 (1957) 594–601. [CrossRef] [MathSciNet] [Google Scholar]
  9. W.M. Boon, M. Hornkjøl, M. Kuchta, K.-A. Mardal and R. Ruiz-Baier, Parameter-robust methods for the Biot–Stokes interfacial coupling without Lagrange multipliers. J. Comput. Phys. 467 (2022) 111464. [CrossRef] [Google Scholar]
  10. S.C. Brenner, Poincaré–Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. [CrossRef] [MathSciNet] [Google Scholar]
  11. S.C. Brenner, Korn’s inequalities for piecewise H1 vector fields. Math. Comput. 73 (2004) 1067–1087. [Google Scholar]
  12. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Series in Computational Mathematics. Springer–Verlag New York Inc. (1991). [Google Scholar]
  13. A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29 (2009) 827–855. [Google Scholar]
  14. M. Bukač, A loosely-coupled scheme for the interaction between a fluid, elastic structure and poroelastic material. J. Comput. Phys. 313 (2016) 377–399. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Bukač, I. Yotov, R. Zakerzadeh and P. Zunino, Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng. 292 (2015) 138–170. [Google Scholar]
  16. S. Caucao, T. Li and I. Yotov, A multipoint stress-flux mixed finite element method for the Stokes–Biot model. Numer. Math. 152 (2022) 411–473. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Cesmelioglu, Analysis of the coupled Navier–Stokes/Biot problem. J. Math. Anal. Appl. 456 (2017) 970–991. [Google Scholar]
  18. A. Cesmelioglu and P. Chidyagwai, Numerical analysis of the coupling of free fluid with a poroelastic material. Numer. Methods Part. Differ. Equ. 36 (2020) 463–494. [Google Scholar]
  19. A. Cesmelioglu and S. Rhebergen, A hybridizable discontinuous Galerkin method for the coupled Navier–Stokes and Darcy problem. J. Comput. Appl. Math. 422 (2023) 114923. [CrossRef] [Google Scholar]
  20. A. Cesmelioglu, B. Cockburn and W. Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comp. 86 (2017) 1643–1670. [Google Scholar]
  21. A. Cesmelioglu, S. Rhebergen and G.N. Wells, An embedded–hybridized discontinuous Galerkin method for the coupled Stokes–Darcy system. J. Comput. Appl. Math. 367 (2020) 112476. [Google Scholar]
  22. A. Cesmelioglu, J.J. Lee and S. Rhebergen, Analysis of an embedded–hybridizable discontinuous Galerkin method for Biot’s consolidation model. J. Sci. Comput. 97 (2023) 60. [CrossRef] [Google Scholar]
  23. A. Cesmelioglu, J.J. Lee and S. Rhebergen, Hybridizable discontinuous Galerkin methods for the coupled Stokes–Biot problem. Comput. Math. App. 144 (2023) 12–33. [Google Scholar]
  24. A. Cesmelioglu, J.J. Lee and S. Rhebergen, A strongly conservative hybridizable discontinuous Galerkin method for the coupled time-dependent Navier–Stokes and Darcy problem. ESAIM: Math. Modell. Numer. Anal. 58 (2024) 273–302. [CrossRef] [EDP Sciences] [Google Scholar]
  25. N. Chaabane, V. Girault, C. Puelz and B. Riviere, Convergence of IPDG for coupled time-dependent Navier–Stokes and Darcy equations. J. Comput. Appl. Math. 324 (2017) 25–48. [Google Scholar]
  26. B. Cockburn, G. Kanschat and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31 (2007) 61–73. [CrossRef] [MathSciNet] [Google Scholar]
  27. B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [Google Scholar]
  28. M. Discacciati and R. Oyarzúa, A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem. Numer. Math. 135 (2017) 571–606. [Google Scholar]
  29. Z. Ge, J. Pang and J. Cao, Multiphysics mixed finite element method with Nitsche’s technique for Stokes-poroelasticity problem. Numer. Methods Part. Differ. Equ. 39 (2023) 544–576. [CrossRef] [Google Scholar]
  30. L. Guo and W. Chen, Decoupled modified characteristic finite element method for the time-dependent Navier–Stokes/Biot problem. Numer. Methods Part. Differ. Equ. 38 (2022) 1684–1712. [CrossRef] [Google Scholar]
  31. V. John, A. Linke, C. Merdon, M. Neilan and L.G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59 (2017) 492–544. [Google Scholar]
  32. G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229 (2010) 5933–5943. [Google Scholar]
  33. W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows. Society for Industrial and Applied Mathematics, Philadelphia, PA (2008). [Google Scholar]
  34. J.J. Lee, K. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput. 39 (2017) A1–A24. [CrossRef] [Google Scholar]
  35. C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307 (2016) 339–361. [Google Scholar]
  36. T. Li and I. Yotov, A mixed elasticity formulation for fluid-poroelastic structure interaction. ESAIM Math. Model. Numer. Anal. 56 (2022) 1–40. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  37. T. Li, S. Caucao and I. Yotov, An augmented fully-mixed formulation for the quasistatic Navier–Stokes–Biot model. IMA J. Numer. Anal. 44 (2024) 1153–1210. [CrossRef] [MathSciNet] [Google Scholar]
  38. R. Oyarzúa and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54 (2016) 2951–2973. [Google Scholar]
  39. O. Oyekole and M. Bukač, Second-order, loosely coupled methods for fluid-poroelastic material interaction. Numer. Methods Part. Differ. Equ. 36 (2020) 800–822. [CrossRef] [Google Scholar]
  40. S. Rhebergen and G.N. Wells, Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 55 (2017) 1982–2003. [Google Scholar]
  41. S. Rhebergen and G.N. Wells, A hybridizable discontinuous Galerkin method for the Navier–Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76 (2018) 1484–1501. [Google Scholar]
  42. S. Rhebergen and G.N. Wells, Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations. J. Sci. Comput. 77 (2018) 1936–1952. [CrossRef] [MathSciNet] [Google Scholar]
  43. S. Rhebergen and G.N. Wells, An embedded–hybridized discontinuous Galerkin finite element method for the Stokes equations. Comput. Methods Appl. Mech. Eng. 358 (2020) 112619. [Google Scholar]
  44. B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM (2008). [CrossRef] [Google Scholar]
  45. R. Ruiz-Baier, M. Taffetani, H.D. Westermeyer and I. Yotov, The Biot–Stokes coupling using total pressure: formulation, analysis and application to interfacial flow in the eye. Comput. Methods Appl. Mech. Eng. 389 (2022) 114384. [CrossRef] [Google Scholar]
  46. P. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50 (1971) 292–315. [Google Scholar]
  47. J. Schöberl, An advancing front 2D/3D-mesh generator based on abstract rules. J. Comput. Visual Sci. 1 (1997) 41–52. [CrossRef] [Google Scholar]
  48. J. Schöberl, C++11 implementation of finite elements in NGSolve. Technical Report ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014). [Google Scholar]
  49. P. Schroeder and G. Lube, Divergence-free H(div)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics. J. Sci. Comput. 75 (2018) 830–858. [CrossRef] [MathSciNet] [Google Scholar]
  50. R.E. Showalter, Poroelastic filtration coupled to Stokes flow, in Control Theory of Partial Differential Equations. Vol. 242 of Lect. Notes Pure Appl. Math. Chapman & Hall/CRC, Boca Raton, FL (2005) 229–241. [CrossRef] [Google Scholar]
  51. J. Wang and X. Ye, New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal. 45 (2007) 1269–1286. [Google Scholar]
  52. G.N. Wells, Analysis of an interface stabilized finite element method: the advection–diffusion–reaction equation. SIAM J. Numer. Anal. 49 (2011) 87–109. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you