Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 4, July-August 2024
|
|
---|---|---|
Page(s) | 1441 - 1460 | |
DOI | https://doi.org/10.1051/m2an/2024047 | |
Published online | 08 August 2024 |
- L. Banjai, C. Lubich and F.-J. Sayas, Stable numerical coupling of exterior and interior problems for the wave equation. Numer. Math. 129 (2015) 611–646. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bilbao and R. Harrison, Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section. J. Acoust. Soc. Am. 140 (2016) 728–740. [CrossRef] [PubMed] [Google Scholar]
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Vol. 2. New York, Springer-Verlag (1991). [CrossRef] [Google Scholar]
- J. Chabassier, Space time convergence of implicit discretization strategies for the mixed formulation of linear wave equations, Inria Research Report 9529 (2023) https://hal.science/hal-04285761. [Google Scholar]
- J. Chabassier and S. Imperiale, Space/time convergence analysis of a class of conservative schemes for linear wave equations. C. R. Math. 355 (2017) 282–289. [CrossRef] [MathSciNet] [Google Scholar]
- J. Chabassier and S. Imperiale, Construction and convergence analysis of conservative second order local time dis-cretisation for linear wave equations. ESAIM: M2AN 55 (2021) 1507–1543. [CrossRef] [EDP Sciences] [Google Scholar]
- G. Cohen and S. Fauqueux, Mixed finite elements with mass-lumping for the transient wave equation. J. Comput. Acoust. 8 (2011) 171–188. [Google Scholar]
- R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. In: Collection du Commissariat a l’Energie Atomique. Série Scientifique (1985) [Google Scholar]
- H. Egger and B. Radu, A mass-lumped mixed finite element method for acoustic wave propagation. Numer. Math. 145 (2020) 239–269. [CrossRef] [MathSciNet] [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Handb. Numer. Anal. 7 (2000) 713–1018. [Google Scholar]
- L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time- domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM: M2AN 39 (2005) 1149–1176. [CrossRef] [EDP Sciences] [Google Scholar]
- T. Geveci, On the application of mixed finite element methods to the wave equations. ESAIM: M2AN 22 (1988) 243–250. [CrossRef] [EDP Sciences] [Google Scholar]
- E.W. Jenkins, B. Rivia‘ere and M.F. Wheeler, A priori error estimates for mixed finite element approximations of the acoustic wave equation. SIAM J. Numer. Anal. 40 (2002) 1698–1715. [CrossRef] [MathSciNet] [Google Scholar]
- P. Joly, Variational methods for time-dependent wave propagation problems. In: Topics in Computational Wave Propagation: Direct and Inverse Problems (2003) 201–264. [Google Scholar]
- S. Lanteri and C. Scheid, Convergence of a discontinuous Galerkin scheme for the mixed time-domain Maxwell’s equations in dispersive media. IMA J. Numer. Anal. 33 (2013) 432–459. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Liu and X. Li, Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows. Numer. Algorithms 89 (2022) 65–86. [CrossRef] [MathSciNet] [Google Scholar]
- C.G. Makridakis, On mixed finite element methods for linear elastodynamics. Numer. Math. 61 (1992) 235–260. [CrossRef] [MathSciNet] [Google Scholar]
- E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197–243. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.