Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 1651 - 1680 | |
DOI | https://doi.org/10.1051/m2an/2024042 | |
Published online | 23 September 2024 |
- J. Badwaik and A.M. Ruf, Convergence rates of monotone schemes for conservation laws with discontinuous flux. SIAM J. Numer. Anal. 58 (2020) 607–629. [CrossRef] [MathSciNet] [Google Scholar]
- P. Batten, N. Clarke, C. Lambert and D.M. Causon, On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 18 (1997) 1553–1570. [CrossRef] [Google Scholar]
- M. Berger and A. Giuliani, A state redistribution algorithm for finite volume schemes on cut cell meshes. J. Comput. Phys. 428 (2021) 109820. [CrossRef] [Google Scholar]
- E. Burman, Ghost penalty. C. R. Math. 348 (2010) 1217–1220. [Google Scholar]
- E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62 (2012) 328–341. [Google Scholar]
- E. Burman, P. Hansbo and M.G. Larson, CutFEM based on extended finite element spaces. Numer. Math. 152 (2022) 331–369. [CrossRef] [MathSciNet] [Google Scholar]
- E. Burman, P. Hansbo and M.G. Larson, Explicit time stepping for the wave equation using cut fem with discrete extension. SIAM J. Sci. Comput. 44 (2022) A1254–A1289. [CrossRef] [Google Scholar]
- Z. Chen and Y. Liu, An arbitrarily high order unfitted finite element method for elliptic interface problems with automatic mesh generation. J. Comput. Phys. 491 (2023) 112384. [CrossRef] [Google Scholar]
- G. Chen, R. Pan and S. Zhu, Singularity formation for the compressible Euler equations. SIAM J. Math. Anal. 49 (2017) 2591–2614. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Chen, K. Li and X. Xiang, An adaptive high-order unfitted finite element method for elliptic interface problems. Numer. Math. 149 (2021) 507–548. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52 (1989) 411–435. [Google Scholar]
- B. Cockburn and C.-W. Shu, The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. [Google Scholar]
- B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84 (1989) 90–113. [Google Scholar]
- B. Cockburn, S. Hou and C.-W. Shu, The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54 (1990) 545–581. [Google Scholar]
- C.M. Dafermos and C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Vol. 3. Springer (2005). [CrossRef] [Google Scholar]
- C. Engwer, S. May, A. Nüßing and F. Streitbürger, A stabilized DG cut cell method for discretizing the linear transport equation. SIAM J. Sci. Comput. 42 (2020) A3677–A3703. [CrossRef] [Google Scholar]
- T. Frachon and S. Zahedi, A cut finite element method for incompressible two-phase Navier–Stokes flows. J. Comput. Phys. 384 (2019) 77–98. [CrossRef] [MathSciNet] [Google Scholar]
- P. Fu and G. Kreiss, High order cut discontinuous Galerkin methods for hyperbolic conservation laws in one space dimension. SIAM J. Sci. Comput. 43 (2021) A2404–A2424. [CrossRef] [Google Scholar]
- P. Fu and Y. Xia, The positivity preserving property on the high order arbitrary Lagrangian–Eulerian discontinuous Galerkin method for Euler equations. J. Comput. Phys. 470 (2022) 111600. [CrossRef] [Google Scholar]
- P. Fu, T. Frachon, G. Kreiss and S. Zahedi, High order discontinuous cut finite element methods for linear hyperbolic conservation laws with an interface. J. Sci. Comput. 90 (2022) 1–39. [CrossRef] [Google Scholar]
- A. Giuliani, A two-dimensional stabilized discontinuous Galerkin method on curvilinear embedded boundary grids. SIAM J. Sci. Comput. 44 (2022) A389–A415. [CrossRef] [Google Scholar]
- J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18 (1965) 697–715. [Google Scholar]
- S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [Google Scholar]
- C. Gürkan, S. Sticko and A. Massing, Stabilized cut discontinuous Galerkin methods for advection-reaction problems. SIAM J. Sci. Comput. 42 (2020) A2620–A2654. [CrossRef] [Google Scholar]
- Y. Ha, C.L. Gardner, A. Gelb and C.-W. Shu, Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Sci. Comput. 24 (2005) 29–44. [CrossRef] [MathSciNet] [Google Scholar]
- P. Hansbo, M.G. Larson and S. Zahedi, A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85 (2014) 90–114. [CrossRef] [MathSciNet] [Google Scholar]
- J.S. Hesthaven, Numerical Methods for Conservation Laws. Society for Industrial and Applied Mathematics, Philadelphia, PA (2018). [CrossRef] [Google Scholar]
- J.S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Science & Business Media (2007). [Google Scholar]
- P. Huang, H. Wu and Y. Xiao, An unfitted interface penalty finite element method for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 323 (2017) 439–460. [CrossRef] [Google Scholar]
- A. Johansson and M.G. Larson, A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math. 123 (2013) 607–628. [CrossRef] [MathSciNet] [Google Scholar]
- V.P. Korobeinikov, Problems of Point Blast Theory. Springer Science & Business Media (1991). [Google Scholar]
- F. Kummer, Extended discontinuous Galerkin methods for two-phase flows: the spatial discretization. Int. J. Numer. Methods Eng. 109 (2017) 259–289. [CrossRef] [Google Scholar]
- M.G. Larson and S. Zahedi, Conservative cut finite element methods using macroelements. Comput. Methods Appl. Mech. Eng. 414 (2023) 116141. [CrossRef] [Google Scholar]
- T. Linde, P. Roe, T. Linde and P. Roe, Robust Euler codes, in 13th Computational Fluid Dynamics Conference. (1997) 2098. [Google Scholar]
- R. Massjung, An unfitted discontinuous Galerkin method applied to elliptic interface problems. SIAM J. Numer. Anal. 50 (2012) 3134–3162. [Google Scholar]
- A. Massing, M.G. Larson, A. Logg and M.E. Rognes, A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sci. Comput. 61 (2014) 604–628. [Google Scholar]
- S. May and F. Streitbürger, DoD stabilization for non-linear hyperbolic conservation laws on cut cell meshes in one dimension. Appl. Math. Comput. 419 (2022) 126854. [Google Scholar]
- J. Modisette and D. Darmofal, Toward a robust, higher-order cut-cell method for viscous flows, in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2010) 721. [Google Scholar]
- B. Müller, S. Kr¨amer-Eis, F. Kummer and M. Oberlack, A high-order discontinuous Galerkin method for compressible flows with immersed boundaries. Int. J. Numer. Methods Eng. 110 (2017) 3–30. [CrossRef] [Google Scholar]
- R. Qin and L. Krivodonova, A discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries. J. Comput. Sci. 4 (2013) 24–35. [CrossRef] [Google Scholar]
- J. Qiu and C.-W. Shu, Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26 (2005) 907–929. [CrossRef] [MathSciNet] [Google Scholar]
- S. Schoeder, S. Sticko, G. Kreiss and M. Kronbichler, High-order cut discontinuous Galerkin methods with local time stepping for acoustics. Int. J. Numer. Methods Eng. 121 (2020) 2979–3003. [CrossRef] [Google Scholar]
- L.I. Sedov, Similarity and Dimensional Methods in Mechanics. CRC Press (1993). [Google Scholar]
- C.-W. Shu, Discontinuous Galerkin methods: general approach and stability. Numer. Sol. Part. Differ. Equ. 201 (2009) 149–201. [Google Scholar]
- E.M. Stein, Singular Integrals and Differentiability Properties of Functions (PMS-30). Vol. 30. Princeton University Press (2016). [Google Scholar]
- S. Sticko and G. Kreiss, A stabilized Nitsche cut element method for the wave equation. Comput. Methods Appl. Mech. Eng. 309 (2016) 364–387. [CrossRef] [Google Scholar]
- S. Sticko and G. Kreiss, Higher order cut finite elements for the wave equation. J. Sci. Comput. 80 (2019) 1867–1887. [CrossRef] [MathSciNet] [Google Scholar]
- S. Tan and C.-W. Shu, Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput. Phys. 229 (2010) 8144–8166. [Google Scholar]
- E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media (2009). [CrossRef] [Google Scholar]
- P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1984) 115–173. [Google Scholar]
- L. Yang, S. Li, Y. Jiang, C.-W. Shu, M. Zhang and Z.-C. Shi, Inverse Lax-Wendroff boundary treatment of discontinuous Galerkin method for 1D conservation laws. Commun. Appl. Math. Comput. (2024) 1–31. [Google Scholar]
- X. Zhang and C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229 (2010) 3091–3120. [CrossRef] [MathSciNet] [Google Scholar]
- X. Zhang and C.-W. Shu, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229 (2010) 8918–8934. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.