Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 1681 - 1724 | |
DOI | https://doi.org/10.1051/m2an/2024060 | |
Published online | 23 September 2024 |
- N.J. Abbott, Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem. Int. 45 (2004) 545–552. [CrossRef] [Google Scholar]
- M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015) 9–23. [Google Scholar]
- A. Alphonse, C.M. Elliott and B. Stinner, An abstract framework for parabolic PDEs on evolving spaces. Port. Math. 72 (2015) 1–46. [CrossRef] [MathSciNet] [Google Scholar]
- W. Arendt, D. Dier and S. Fackler, JL Lions’ problem on maximal regularity. Arch. Math. 109 (2017) 59–72. [CrossRef] [MathSciNet] [Google Scholar]
- W.F. Boron and E.L. Boulpaep, Medical Physiology. Elsevier Health Sciences (2012). [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Vol. 3. Springer (2008). [Google Scholar]
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Vol. 2. Springer (2010). [Google Scholar]
- T. Brinker, E. Stopa, J. Morrison and P. Klinge, A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11 (2014) 1–16. [Google Scholar]
- S. Čanić and E.H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Math. Methods Appl. Sci. 26 (2003) 1161–1186. [CrossRef] [MathSciNet] [Google Scholar]
- M. Causemann, V. Vinje and M.E. Rognes, Human intracranial pulsatility during the cardiac cycle: a computational modelling framework. Fluids Barriers CNS 19 (2022) 1–17. [CrossRef] [PubMed] [Google Scholar]
- C. D’Angelo, Multiscale modelling of metabolism and transport phenomena in living tissues, Technical report, EPFL (2007). [Google Scholar]
- C. D’Angelo, Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one-and three-dimensional coupled problems. SIAM J. Numer. Anal. 50 (2012) 194–215. [Google Scholar]
- C. D’Angelo and A. Quarteroni, On the coupling of 1D and 3D diffusion-reaction equations: application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18 (2008) 1481–1504. [CrossRef] [MathSciNet] [Google Scholar]
- C. Daversin-Catty, V. Vinje, K.-A. Mardal and M.E. Rognes, The mechanisms behind perivascular fluid flow. PLoS ONE 15 (2020) e0244442. [CrossRef] [PubMed] [Google Scholar]
- C. Daversin-Catty, I.G. Gjerde and M.E. Rognes, Geometrically reduced modelling of pulsatile flow in perivascular networks. Front. Phys. 10 (2022) 882260. [CrossRef] [Google Scholar]
- M.C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. SIAM (2011). [Google Scholar]
- E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. [Google Scholar]
- I. Drelichman, R.G. Durán and I. Ojea, A weighted setting for the numerical approximation of the Poisson problem with singular sources. SIAM J. Numer. Anal. 58 (2020) 590–606. [CrossRef] [MathSciNet] [Google Scholar]
- L.C. Evans, Partial Differential Equations, Vol. 19. American Mathematical Society (2010). [Google Scholar]
- G.J. Fleischman, T.W. Secomb and J.F. Gross, The interaction of extravascular pressure fields and fluid exchange in capillary networks. Math. Biosci. 82 (1986) 141–151. [Google Scholar]
- L. Formaggia, J.-F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191 (2001) 561–582. [CrossRef] [Google Scholar]
- I.G. Gjerde, K. Kumar, J.M. Nordbotten and B. Wohlmuth, Splitting method for elliptic equations with line sources. ESAIM:M2AN 53 (2019) 1715–1739. [CrossRef] [EDP Sciences] [Google Scholar]
- I.G. Gjerde, K. Kumar and J.M. Nordbotten, A singularity removal method for coupled 1D–3D flow models. Comput. Geosci. 24 (2020) 443–457. [CrossRef] [MathSciNet] [Google Scholar]
- F. Goirand, T.L. Borgne and S. Lorthois, Network-driven anomalous transport is a fundamental component of brain microvascular dysfunction. Nat. Commun. 12 (2021) 7295. [CrossRef] [Google Scholar]
- W. Gong, G. Wang and N. Yan, Approximations of elliptic optimal control problems with controls acting on a lower dimensional manifold. SIAM J. Control Optim. 52 (2014) 2008–2035. [Google Scholar]
- J.-L. Guermond and A. Ern, Finite Elements I: Approximation and Interpolation. Springer (2021). [Google Scholar]
- M.-J. Hannocks, M.E. Pizzo, J. Huppert, T. Deshpande, N.J. Abbott, R.G. Thorne and L. Sorokin, Molecular characterization of perivascular drainage pathways in the murine brain. J. Cereb. Blood Flow Metab. 38 (2018) 669–686. [CrossRef] [PubMed] [Google Scholar]
- V. Hernandez, J.E. Roman and V. Vidal, SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31 (2005) 351–362. [CrossRef] [Google Scholar]
- S.B. Hladky and M.A. Barrand, The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19 (2022) 1–33. [CrossRef] [PubMed] [Google Scholar]
- S. Hofmann, M. Mitrea and M. Taylor, Geometric and transformational properties of Lipschitz domains, Semmes–Kenig–Toro domains, and other classes of finite perimeter domains. J. Geom. Anal. 17 (2007) 593–647. [CrossRef] [MathSciNet] [Google Scholar]
- D.H. Kelley, T. Bohr, P.G. Hjorth, S.C. Holst, S. Hrabětová, V. Kiviniemi, T. Lilius, I. Lundgaard, K.-A. Mardal, E.A. Martens, Y. Mori and U.V. N¨agerl, The glymphatic system: current understanding and modeling. iScience 25 (2022) 104987. [CrossRef] [PubMed] [Google Scholar]
- T. Koch, K. Heck, N. Schröder, H. Class and R. Helmig, A new simulation framework for soil–root interaction, evaporation, root growth, and solute transport. Vadose Zone J. 17 (2018) 1–21. [CrossRef] [Google Scholar]
- T. Koch, M. Schneider, R. Helmig and P. Jenny, Modeling tissue perfusion in terms of 1D–3D embedded mixed-dimension coupled problems with distributed sources. J. Comput. Phys. 410 (2020) 109370. [CrossRef] [MathSciNet] [Google Scholar]
- T. Koch, H. Wu and M. Schneider, Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake. J. Comput. Phys. 450 (2022) 110823. [CrossRef] [Google Scholar]
- T. Köppl, E. Vidotto, B. Wohlmuth and P. Zunino, Mathematical modeling, analysis and numerical approximation of second-order elliptic problems with inclusions. Math. Models Methods Appl. Sci. 28 (2018) 953–978. [Google Scholar]
- T. Köppl, E. Vidotto and B. Wohlmuth, A 3D–1D coupled blood flow and oxygen transport model to generate microvascular networks. Int. J. Numer. Methods Biomed. Eng. 36 (2020) e3386. [CrossRef] [PubMed] [Google Scholar]
- M. Kuchta, Assembly of multiscale linear PDE operators. In: Numerical Mathematics and Advanced Applications ENUMATH 2019: European Conference, Egmond aan Zee, The Netherlands, September 30–October 4. Springer (2020) 641–650. [Google Scholar]
- M. Kuchta, K.-A. Mardal and M. Mortensen, Preconditioning trace coupled 3D–1D systems using fractional Laplacian. Numer. Methods Partial Differ. Equ. 35 (2019) 375–393. [CrossRef] [Google Scholar]
- M. Kuchta, F. Laurino, K.-A. Mardal and P. Zunino, Analysis and approximation of mixed-dimensional PDEs on 3D–1D domains coupled with Lagrange multipliers. SIAM J. Numer. Anal. 59 (2021) 558–582. [CrossRef] [MathSciNet] [Google Scholar]
- J.R. Kuttler and V.G. Sigillito, An inequality for a Stekloff eigenvalue by the method of defect. Proc. Am. Math. Soc. 20 (1969) 357–360. [Google Scholar]
- E. LaMontagne, A.R. Muotri and A.J. Engler, Recent advancements and future requirements in vascularization of cortical organoids. Front. Bioeng. Biotechnol. 10 (2022) 2059. [CrossRef] [Google Scholar]
- F. Laurino and P. Zunino, Derivation and analysis of coupled PDEs on manifolds with high dimensionality gap arising from topological model reduction. ESAIM:M2AN 53 (2019) 2047–2080. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Logg, K.-A. Mardal and G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The Fenics Book, Vol. 8. Springer Science & Business Media (2012). [CrossRef] [Google Scholar]
- T.J. Lohela, T.O. Lilius and M. Nedergaard, The glymphatic system: implications for drugs for central nervous system diseases. Nat. Rev. Drug Discov. 21 (2022) 763–779. [CrossRef] [PubMed] [Google Scholar]
- L. Malenica, H. Gotovac, G. Kamber, S. Simunovic, S. Allu and V. Divic, Groundwater flow modeling in karst aquifers: coupling 3D matrix and 1D conduit flow via control volume isogeometric analysis-experimental verification with a 3D physical model. Water 10 (2018) 1787. [CrossRef] [Google Scholar]
- H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A.M. Sweeney, G. Olveda, J.H. Thomas, M. Nedergaard and D.H. Kelley, Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9 (2018) 1–9. [NASA ADS] [CrossRef] [Google Scholar]
- E. Nance, S.H. Pun, R. Saigal and D.L. Sellers, Drug delivery to the central nervous system. Nat. Rev. Mater. 7 (2022) 314–331. [Google Scholar]
- C. Nicholson, Diffusion and related transport mechanisms in brain tissue. Rep. Progress Phys. 64 (2001) 815. [CrossRef] [Google Scholar]
- F. Nobile, Numerical approximation of fluid–structure interaction problems with application to haemodynamics, Technical report, EPFL (2001). [Google Scholar]
- J.M. Nordbotten, D. Kavetski, M.A. Celia and S. Bachu, Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43 (2009) 743–749. [CrossRef] [PubMed] [Google Scholar]
- D. Notaro, L. Cattaneo, L. Formaggia, A. Scotti and P. Zunino, A mixed finite element method for modeling the fluid exchange between microcirculation and tissue interstitium. In: Advances in Discretization Methods: Discontinuities, Virtual Elements, Fictitious Domain Methods (2016) 3–25. [CrossRef] [Google Scholar]
- L. Possenti, G. Casagrande, S. Di Gregorio, P. Zunino and M.L. Costantino, Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system. Microvasc. Res. 122 (2019) 101–110. [Google Scholar]
- L. Possenti, A. Cicchetti, R. Rosati, D. Cerroni, M.L. Costantino, T. Rancati and P. Zunino, A mesoscale computational model for microvascular oxygen transfer. Ann. Biomed. Eng. 49 (2021) 3356–3373. [CrossRef] [PubMed] [Google Scholar]
- E. Rohan, V. Lukeš and A. Jonášová, Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media. J. Math. Biol. 77 (2018) 421–454. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- S.A. Sauter and R. Warnke, Extension operators and approximation on domains containing small geometric details. East West J. Numer. Math. 7 (1999) 61–77. [MathSciNet] [Google Scholar]
- J.J. Sloots, G.J. Biessels and J.J. Zwanenburg, Cardiac and respiration-induced brain deformations in humans quantified with high-field MRI. Neuroimage 210 (2020) 116581. [CrossRef] [PubMed] [Google Scholar]
- W. Stekloff, Sur les problémes fondamentaux de la physique mathématique. Ann. Sci. de l’ École Norm. Supérieure 19 (1902) 191–259. [CrossRef] [Google Scholar]
- J.M. Tarasoff-Conway, R.O. Carare, R.S. Osorio, L. Glodzik, T. Butler, E. Fieremans, L. Axel, H. Rusinek, C. Nicholson, B.V. Zlokovic and B. Frangione, Clearance systems in the brain–implications for Alzheimer disease. Nat. Rev. Neurol. 11 (2015) 457–470. [CrossRef] [PubMed] [Google Scholar]
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Vol. 25. Springer Science & Business Media (2007). [Google Scholar]
- V. Vinje, E.N. Bakker and M.E. Rognes, Brain solute transport is more rapid in periarterial than perivenous spaces. Sci. Rep. 11 (2021) 1–11. [NASA ADS] [CrossRef] [Google Scholar]
- V. Vinje, B. Zapf, G. Ringstad, P.K. Eide, M.E. Rognes and K. Mardal, Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids Barriers CNS 20 (2023) 62. [CrossRef] [PubMed] [Google Scholar]
- J.M. Wardlaw, H. Benveniste, M. Nedergaard, B.V. Zlokovic, H. Mestre, H. Lee, F.N. Doubal, R. Brown, J. Ramirez, B.J. MacIntosh and A. Tannenbaum, Perivascular spaces in the brain: anatomy, physiology and pathology. Nat. Rev. Neurol. 16 (2020) 137–153. [CrossRef] [PubMed] [Google Scholar]
- M.L. Wheeler and M.L. Oyen, Bioengineering approaches for placental research. Ann. Biomed. Eng. 49 (2021) 1–14. [Google Scholar]
- L. Zhao, A. Tannenbaum, E.N. Bakker and H. Benveniste, Physiology of glymphatic solute transport and waste clearance from the brain. Physiology 37 (2022) 349–362. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.