Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 1725 - 1754 | |
DOI | https://doi.org/10.1051/m2an/2024023 | |
Published online | 23 September 2024 |
- G.P. Agrawal, Nonlinear fiber optics, in Nonlinear Science at the Dawn of the 21st Century. Springer, Heidelberg (2000) 195–211. [CrossRef] [Google Scholar]
- G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115–124. [Google Scholar]
- G.D. Akrivis, V.A. Dougalis and O.A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59 (1991) 31–53. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuška, The finite element method with penalty. Math. Comput. 27 (1973) 221–228. [CrossRef] [Google Scholar]
- I. Babuška and M. Zlámal, Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10 (1973) 863–875. [CrossRef] [MathSciNet] [Google Scholar]
- G.A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31 (1977) 45–59. [CrossRef] [Google Scholar]
- W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math. Comput. 82 (2013) 99–128. [Google Scholar]
- W. Bao, D. Jaksch and P.A. Markowich, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. J. Comput. Phys. 187 (2003) 318–342. [CrossRef] [MathSciNet] [Google Scholar]
- G. Baruch and G. Fibich, Singular solutions of the L2-supercritical biharmonic nonlinear Schrödinger equation. Nonlinearity 24 (2011) 1843. [CrossRef] [MathSciNet] [Google Scholar]
- G. Baruch, G. Fibich and E. Mandelbaum, Ring-type singular solutions of the biharmonic nonlinear Schrödinger equation. Nonlinearity 23 (2010) 2867. [CrossRef] [MathSciNet] [Google Scholar]
- G. Baruch, G. Fibich and E. Mandelbaum, Singular solutions of the biharmonic nonlinear Schrödinger equation. SIAM J. Appl. Math. 70 (2010) 3319–3341. [CrossRef] [MathSciNet] [Google Scholar]
- C. Besse, A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42 (2004) 934–952. [Google Scholar]
- J. Bona, H. Chen, O. Karakashian and Y. Xing, Conservative, discontinuous Galerkin–methods for the generalized Korteweg–de Vries equation. Math. Comput. 82 (2013) 1401–1432. [CrossRef] [Google Scholar]
- O. Cessenat and B. Despres, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255–299. [Google Scholar]
- Q. Chang, B. Guo and H. Jiang, Finite difference method for generalized Zakharov equations. Math. Comput. 64 (1995) 537–553. [CrossRef] [Google Scholar]
- A. Chen, F. Li and Y. Cheng, An ultra-weak discontinuous Galerkin method for Schrödinger equation in one dimension. J. Sci. Comput. 78 (2019) 772–815. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77 (2008) 699–730. [Google Scholar]
- P.G. Ciarlet, The finite element method for elliptic problems. Class. Appl. Math. 40 (2002) 1–511. [Google Scholar]
- B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. [Google Scholar]
- B. Cockburn and C.-W. Shu, Foreword for the special issue on discontinuous Galerkin method. J. Sci. Comput. 22 (2005) 1–3. [MathSciNet] [Google Scholar]
- B. Cockburn, G. Kanschat, I. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39 (2001) 264–285. [Google Scholar]
- S. Cui and C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces Hs(Rn) and applications. Nonlinear Anal. 67 (2007) 687–707. [CrossRef] [MathSciNet] [Google Scholar]
- I. Dag, A quadratic B-spline finite element method for solving nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 174 (1999) 247–258. [CrossRef] [Google Scholar]
- C. Dawson, Foreword for the special issue on discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 195 (2006) 8–68. [Google Scholar]
- B. Despres, Sur une formulation variationnelle de type ultra-faible. C. R. Acad. Sci. Paris Sér. I Math. 318 (1994) 939–944. [MathSciNet] [Google Scholar]
- B. Dong and C.-W. Shu, Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47 (2009) 3240–3268. [Google Scholar]
- B. Ilan, G. Fibich and G. Papanicolaou, Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62 (2002) 1437–1462. [CrossRef] [MathSciNet] [Google Scholar]
- O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36 (1999) 1779–1807. [CrossRef] [MathSciNet] [Google Scholar]
- V. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations. Phys. Rev. E 53 (1996) R1336. [CrossRef] [PubMed] [Google Scholar]
- V. Karpman and A. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion. Phys. D 144 (2000) 194–210. [CrossRef] [MathSciNet] [Google Scholar]
- J. Li, D. Zhang, X. Meng and B. Wu, Analysis of local discontinuous Galerkin methods with generalized numerical fluxes for linearized KdV equations. Math. Comput. 89 (2020) 2085–2111. [CrossRef] [Google Scholar]
- D. Pathria and J.L. Morris, Pseudo-spectral solution of nonlinear Schrödinger equations. J. Comput. Phys. 87 (1990) 108–125. [Google Scholar]
- B. Pausader, The cubic fourth-order Schrödinger equation. J. Funct. Anal. 256 (2009) 2473–2517. [CrossRef] [MathSciNet] [Google Scholar]
- W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Laboratory, New Mexico, United States of America (1973). [Google Scholar]
- M. Robinson, G. Fairweather and B. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable. J. Comput. Phys. 104 (1993) 277–284. [CrossRef] [MathSciNet] [Google Scholar]
- C.-W. Shu, Discontinuous Galerkin methods for time-dependent convection dominated problems: basics, recent developments and comparison with other methods, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Springer, Cham (2016) 371–399. [Google Scholar]
- Q. Tao, Y. Xu and C.-W. Shu, An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. Math. Comput. 89 (2020) 2753–2783. [CrossRef] [Google Scholar]
- Q. Tao, Y. Xu and C.-W. Shu, A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations. J. Comput. Appl. Math. 386 (2021) 113230. [CrossRef] [Google Scholar]
- M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. [CrossRef] [MathSciNet] [Google Scholar]
- A. Xiao, C. Wang and J. Wang, Conservative linearly-implicit difference scheme for a class of modified Zakharov systems with high-order space fractional quantum correction. Appl. Numer. Math. 146 (2019) 379–399. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Xu and C.-W. Shu, Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50 (2012) 79–104. [Google Scholar]
- J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40 (2002) 769–791. [Google Scholar]
- N. Yi, Y. Huang and H. Liu, A conservative discontinuous Galerkin method for nonlinear electromagnetic Schrödinger equations. SIAM J. Sci. Comput. 41 (2019) B1389–B1411. [CrossRef] [Google Scholar]
- L. Zhang, A local energy-based discontinuous Galerkin method for fourth-order semilinear wave equations. IMA J. Numer. Anal. (2023). DOI: 10.1093/imanum/drad076. [Google Scholar]
- G. Zhang and C. Su, A conservative linearly-implicit compact difference scheme for the quantum Zakharov system. J. Sci. Comput. 87 (2021) 1–24. [CrossRef] [Google Scholar]
- H. Zhang, B. Wu and X. Meng, A local discontinuous Galerkin method with generalized alternating fluxes for 2D nonlinear Schrödinger equations. Commun. Appl. Math. Comput. 1 (2022) 84–107. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.