Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 1755 - 1783 | |
DOI | https://doi.org/10.1051/m2an/2024061 | |
Published online | 23 September 2024 |
- A.C. Aristotelous, O.A. Karakashian and S.M. Wise, Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source. IMA J. Numer. Anal. 35 (2015) 1167–1198. [CrossRef] [MathSciNet] [Google Scholar]
- A.V. Babin and M.I. Vishik, Attractors of evolution equations. In Vol. 25 of Studies in Mathematics and Its Applications. North-Holland Publishing Co., Amsterdam (1992). [Google Scholar]
- N. Batangouna, A robust family of exponential attractors for a time semi-discretization of the Ginzburg-Landau equation. AIMS Math. 7 (2022) 1399–1415. [Google Scholar]
- N. Batangouna and M. Pierre, Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Commun. Pure Appl. Anal. 17 (2018) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
- M. Brachet, P. Parnaudeau and M. Pierre, Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation. Discrete Contin. Dyn. Syst. Ser. S 15 (2022) 1987–2031. [CrossRef] [MathSciNet] [Google Scholar]
- J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. [Google Scholar]
- L. Cherfils, A. Miranville and S. Zelik, On a generalized Cahn-Hilliard equation with biological applications. Discrete Contin. Dyn. Syst. Ser. B 19 (2014) 2013–2026. [MathSciNet] [Google Scholar]
- D. Dor, On the modified of the one-dimensional Cahn-Hilliard equation with a source term. AIMS Math. 7 (2022) 14672–14695. [CrossRef] [MathSciNet] [Google Scholar]
- D. Dor, On the hyperbolic relaxation of the Cahn-Hilliard equation with a mass source. Asymptot. Anal. 135 (2023) 25–53. [MathSciNet] [Google Scholar]
- D. Dor, A. Miranville and M. Pierre, Hyperbolic relaxation of the viscous Cahn-Hilliard equation with a symport term for the biological applications. Math. Methods Appl. Sci. 47 (2024) 5999–6035. [CrossRef] [MathSciNet] [Google Scholar]
- A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations. In Vol. 37 of RAM: Research in Applied Mathematics. Masson, Paris, John Wiley & Sons, Ltd., Chichester (1994). [Google Scholar]
- M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system. Math. Nachr. 272 (2004) 11–31. [CrossRef] [MathSciNet] [Google Scholar]
- C.M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math. Comput. 58 (1992) 603–630. [Google Scholar]
- H. Fakih, Asymptotic behavior of a generalized Cahn-Hilliard equation with a mass source. Appl. Anal. 96 (2017) 324–348. [CrossRef] [MathSciNet] [Google Scholar]
- H. Garcke and K.F. Lam, Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport. Eur. J. Appl. Math. 28 (2017) 284–316. [CrossRef] [Google Scholar]
- D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 ed. [CrossRef] [Google Scholar]
- E. Khain and L.M. Sander, Generalized Cahn-Hilliard equation for biological applications. Phys. Rev. E 77 (2008) 051129. [CrossRef] [PubMed] [Google Scholar]
- C. Lee, H. Kim, S. Yoon, J. Park, S. Kim, J. Yang and J. Kim, On the evolutionary dynamics of the Cahn-Hilliard equation with cut-off mass source. Numer. Math. Theory Methods Appl. 14 (2020) 242–260. [Google Scholar]
- L. Li, A. Miranville and R. Guillevin, Cahn-Hilliard models for glial cells. Appl. Math. Optim. 84 (2021) 1821–1842. [CrossRef] [MathSciNet] [Google Scholar]
- L. Li, A. Miranville and R. Guillevin, A coupled Cahn-Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Q. Appl. Math. 79 (2021) 383–394. [Google Scholar]
- A. Miranville, Asymptotic behaviour of a generalized Cahn-Hilliard equation with a proliferation term. Appl. Anal. 92 (2013) 1308–1321. [CrossRef] [MathSciNet] [Google Scholar]
- A. Miranville, A generalized Cahn-Hilliard equation with logarithmic potentials. In: Continuous and Distributed Systems II. Theory and Applications. Springer, Cham (2015) 137–148. [Google Scholar]
- A. Miranville, The Cahn-Hilliard equation and some of its variants. AIMS Math. 2 (2017) 479–544. [CrossRef] [Google Scholar]
- A. Miranville, A singular reaction-diffusion equation associated with brain lactate kinetics. Math. Methods Appl. Sci. 40 (2017) 2454–2465. [CrossRef] [MathSciNet] [Google Scholar]
- A. Miranville, The Cahn-Hilliard equation. Recent advances and applications. In Vol. 95 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2019). [Google Scholar]
- A. Miranville, The Cahn-Hilliard equation with a nonlinear source term. J. Differ. Equ. 294 (2021) 88–117. [CrossRef] [Google Scholar]
- A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains. In Vol. IV Handbook of Differential Equations: Evolutionary Equations. Elsevier/North-Holland, Amsterdam (2008) 103–200. [CrossRef] [Google Scholar]
- M. Pierre, Convergence of exponential attractors for a finite element approximation of the Allen-Cahn equation. Numer. Funct. Anal. Optim. 39 (2018) 1755–1784. [CrossRef] [MathSciNet] [Google Scholar]
- M. Pierre, Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation. Numer. Math. 139 (2018) 121–153. [CrossRef] [MathSciNet] [Google Scholar]
- J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28 (2010) 1669–1691. [Google Scholar]
- A.M. Stuart and A.R. Humphries, Dynamical systems and numerical analysis. In Vol. 2 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1996). [Google Scholar]
- R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, 2nd edition. In Vol. 68 of Applied Mathematical Sciences. Springer-Verlag, New York (1997). [CrossRef] [Google Scholar]
- X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: time discretization. Math. Comput. 79 (2010) 259–280. [CrossRef] [Google Scholar]
- X. Wang, Numerical algorithms for stationary statistical properties of dissipative dynamical systems. Discrete Contin. Dyn. Syst. 36 (2016) 4599–4618. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.