Open Access
Issue
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
Page(s) 2079 - 2115
DOI https://doi.org/10.1051/m2an/2024070
Published online 21 October 2024
  1. M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015) 2015. [Google Scholar]
  2. R. Araya, A. Caiazzo and F. Chouly, Stokes problem with slip boundary conditions using stabilized finite elements combined with Nitsche. Comput. Methods Appl. Mech. Eng. 427 (2024) 117037. [CrossRef] [Google Scholar]
  3. N. Ahmed and S. Rubino, Numerical comparisons of finite element stabilized methods for a 2D vortex dynamics simulation at high Reynolds number. Comput. Methods Appl. Mech. Eng. 349 (2019) 191–212. [CrossRef] [Google Scholar]
  4. I. Babuška, The finite element method with penalty. Math. Comput. 27 (1973) 221–228. [CrossRef] [Google Scholar]
  5. A. Bansal and N.A. Barnafi Wittwer, Nitsche method for Navier–Stokes equations with slip boundary conditions: convergence analysis and VMS-les stabilization (source code) (2023). Available at https://github.com/nabw/navier-stokes-nitsche-vms. [Google Scholar]
  6. J.W. Barrett and C.M. Elliott, Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math. 49 (1986) 343–366. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Bayraktar, O. Mierka and S. Turek, Benchmark computations of 3d laminar flow around a cylinder with CFX, OpenFOAM and FeatFlow. Int. J. Comput. Sci. Eng. 7 (2012) 253–266. [Google Scholar]
  8. Y. Bazilevs and T.J.R. Hughes, Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36 (2007) 12–26. [CrossRef] [MathSciNet] [Google Scholar]
  9. Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali and G. Scovazzi, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197 (2007) 173–201. [CrossRef] [Google Scholar]
  10. S. Berg, A.W. Cense, J.P. Hofman and R.M.M. Smits, Two-phase flow in porous media with slip boundary condition. Transp. Porous Media 74 (2008) 275–292. [CrossRef] [Google Scholar]
  11. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). [CrossRef] [Google Scholar]
  12. E. Burman, D. Garg and J. Guzman, Implicit-explicit time discretization for Oseen’s equation at high Reynolds number with application to fractional step methods. SIAM J. Numer. Anal. 61 (2023) 2859–2886. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Caglar and A. Liakos, Weak imposition of boundary conditions for the Navier–Stokes equations by a penalty method. Int. J. Numer. Methods Fluids 61 (2009) 411–431. [CrossRef] [Google Scholar]
  14. J. Camaño, C. García and R. Oyarzúa, Analysis of a momentum conservative mixed FEM for the stationary Navier–Stokes problem. Numer. Methods Partial Differ. Equ. 37 (2021) 2895–2923. [CrossRef] [Google Scholar]
  15. F.E. Cellier and E. Kofman, Continuous System Simulation. Springer Science & Business Media (2006). [Google Scholar]
  16. F. Chouly, A review on some discrete variational techniques for the approximation of essential boundary conditions. Vietnam J. Math. (2024) 1–43. [Google Scholar]
  17. K.N. Christodoulou and L.E. Scriven, The fluid mechanics of slide coating. J. Fluid Mech. 208 (1989) 321–354. [CrossRef] [Google Scholar]
  18. R. Codina, Stabilization of incompressibility and convection through orthogonal subscales in finite element methods. Comput. Methods Appl. Mech. Eng. 190 (2000) 1579–1599. [CrossRef] [Google Scholar]
  19. R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Eng. 191 (2002) 4295–4321. [Google Scholar]
  20. R. Codina, J. Principe, O. Guasch and S. Badia, Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput. Methods Appl. Mech. Eng. 196 (2007) 2413–2430. [CrossRef] [Google Scholar]
  21. E. Colmenares, R. Oyarzúa and F. Piña. A discontinuous Galerkin method for the stationary Boussinesq system. Comput. Methods Appl. Math. 22 (2022) 797–820. [CrossRef] [MathSciNet] [Google Scholar]
  22. O. Colomés, S. Badia, R. Codina and J. Principe, Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows. Comput. Methods Appl. Mech. Eng. 285 (2015) 32–63. [CrossRef] [Google Scholar]
  23. I. Dione and J.M. Urquiza, Penalty: finite element approximation of Stokes equations with slip boundary conditions. Numer. Math. 129 (2015) 587–610. [CrossRef] [MathSciNet] [Google Scholar]
  24. I. Dione, C. Tibirna and J. Urquiza, Stokes equations with penalised slip boundary conditions. Int. J. Comput. Fluid Dyn. 27 (2013) 283–296. [CrossRef] [MathSciNet] [Google Scholar]
  25. H.C. Elman, D.J. Silvester and A.J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation, 2nd edition. Oxford University Press, Oxford (2014). [Google Scholar]
  26. A. Ern and J.L. Guermond, Finite Elements I – Approximation and Interpolation. Vol. 72 of Texts in Applied Mathematics. Springer, Cham (2021). [Google Scholar]
  27. D. Forti and L. Dedè, Semi-implicit BDF time discretization of the Navier–Stokes equations with VMS-LES modeling in a high performance computing framework. Comput. Fluids 117 (2015) 168–182. [CrossRef] [MathSciNet] [Google Scholar]
  28. G.P. Galdi and W.J. Layton, Approximation of the larger eddies in fluid motions. II. A model for space-filtered flow. Math. Models Methods Appl. Sci. 10 (2000) 343–350. [CrossRef] [MathSciNet] [Google Scholar]
  29. U. Ghia, K.N. Ghia and C.T. Shin, High-re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48 (1982) 387–411. [CrossRef] [Google Scholar]
  30. V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier–Stokes Equations. Vol. 749 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York (1979). [CrossRef] [Google Scholar]
  31. I.G. Gjerde and L.R. Scott, Nitsche’s method for Navier–Stokes equations with slip boundary conditions. Math. Comput. 91 (2022) 597–622. [Google Scholar]
  32. I.G. Gjerde and L.R. Scott, Kinetic-energy instability of flows with slip boundary conditions. J. Math. Fluid Mech. 24 (2022) 27. [CrossRef] [Google Scholar]
  33. S. Goldstein, Modern Developments in Fluid Dynamics: An Account of Theory and Experiment Relating to Boundary Layers, Turbulent Motion and Wakes. Vol. 2. Clarendon Press (1938). [Google Scholar]
  34. H. Gopalan, S. Heinz and M.K. Stöllinger, A unified RANS-LES model: computational development, accuracy and cost. J. Comput. Phys. 249 (2013) 249–274. [CrossRef] [MathSciNet] [Google Scholar]
  35. P Hansbo, Nitsche’s method for interface problems in computational mechanics. GAMM-Mitteilungen 28 (2005) 183–206. [CrossRef] [MathSciNet] [Google Scholar]
  36. A. Henderson, Paraview Guide: A Parallel Visualization Application. Kitware Inc. (2007). [Google Scholar]
  37. T.J.R. Hughes, L. Mazzei and K.E. Jansen, Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3 (2000) 47–59. [CrossRef] [Google Scholar]
  38. T.J.R. Hughes, A.A. Oberai and L. Mazzei, Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids 13 (2001) 1784–1799. [CrossRef] [Google Scholar]
  39. V. John and A. Kindl, Variants of projection-based finite element variational multiscale methods for the simulation of turbulent flows. Int. J. Numer. Methods Fluids 56 (2008) 1321–1328. [CrossRef] [Google Scholar]
  40. M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78 (2009) 1353–1374. [Google Scholar]
  41. T. Kashiwabara, I. Oikawa and G. Zhou, Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition. Numer. Math. 134 (2016) 705–740. [CrossRef] [MathSciNet] [Google Scholar]
  42. T. Kashiwabara, I. Oikawa and G. Zhou, Penalty method with Crouzeix–Raviart approximation for the Stokes equations under slip boundary condition. ESAIM Math. Model. Numer. Anal. 53 (2019) 869–891. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  43. B. Koobus and C. Farhat, A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes application to vortex shedding. Comput. Methods Appl. Mech. Eng. 193 (2004) 1367–1383. [CrossRef] [Google Scholar]
  44. W. Layton, Weak imposition of “no-slip” conditions in finite element methods. Comput. Math. Appl. 38 (1999) 129–142. [CrossRef] [MathSciNet] [Google Scholar]
  45. H. Minaki and S. Li, Multiscale modeling and simulation of dynamic wetting. Comput. Methods Appl. Mech. Eng. 273 (2014) 273–302. [CrossRef] [Google Scholar]
  46. A. Montlaur, S. Fernandez-Mendez, J. Peraire and A. Huerta, Discontinuous Galerkin methods for the Navier–Stokes equations using solenoidal approximations. Int. J. Numer. Methods Fluids 64 (2010) 549–564. [CrossRef] [Google Scholar]
  47. R.C. Moura, G. Mengaldo, J. Peiró and S.J. Sherwin, On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence. J. Comput. Phys. 330 (2017) 615–623. [CrossRef] [MathSciNet] [Google Scholar]
  48. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilr¨aumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. [CrossRef] [MathSciNet] [Google Scholar]
  49. M.R. Nived, S.S.C. Athkuri and V. Eswaran, On the application of higher-order backward difference (BDF) methods for computing turbulent flows. Comput. Math. Appl. 117 (2022) 299–311. [CrossRef] [MathSciNet] [Google Scholar]
  50. X. Nogueira, L. Cueto-Felgueroso, I. Colominas and H. Gómez, Implicit large eddy simulation of non-wall-bounded turbulent flows based on the multiscale properties of a high-order finite volume method. Comput. Methods Appl. Mech. Eng. 199 (2010) 615–624. [CrossRef] [Google Scholar]
  51. S. Perdoncin, Numerical validation of a variational multiscale-LES turbulence model for blood flows. POLITesi (2020). [Google Scholar]
  52. A. Quarteroni, R. Sacco and F. Saleri, Matematica Numerica. Springer-Verlag Italia, Milan (1998). [Google Scholar]
  53. W. Rodi, DNS and LES of some engineering flows. Fluid Dyn. Res. 38 (2006) 145–173. [CrossRef] [Google Scholar]
  54. L. Scott, Introduction to Automated Modeling with FEniCS. Computational Modeling Initiative LLC (2018). [Google Scholar]
  55. Z.C. Shi, On the convergence rate of the boundary penalty method. Int. J. Numer. Methods Eng. 20 (1984) 2027–2032. [CrossRef] [Google Scholar]
  56. Y. Sone, Kinetic Theory and Fluid Dynamics. Springer (2002). [CrossRef] [Google Scholar]
  57. R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63 (1995) 139–148. [CrossRef] [MathSciNet] [Google Scholar]
  58. A. Tagliabue, L. Dedè and A. Quarteroni, Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics. Comput. Fluids 102 (2014) 277–303. [MathSciNet] [Google Scholar]
  59. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 1054 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1984). [Google Scholar]
  60. J.M. Urquiza, A. Garon and M.I. Farinas, Weak imposition of the slip boundary condition on curved boundaries for Stokes flow. J. Comput. Phys. 256 (2014) 748–767. [CrossRef] [MathSciNet] [Google Scholar]
  61. R. Verfürth, Finite element approximation on incompressible Navier–Stokes equations with slip boundary condition. Numer. Math. 50 (1986) 697–721. [CrossRef] [Google Scholar]
  62. R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. II. Numer. Math. 59 (1991) 615–636. [CrossRef] [MathSciNet] [Google Scholar]
  63. J. Volker, Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier–Stokes equations. Int. J. Numer. Methods Fluids 40 (2002) 775–798. [Google Scholar]
  64. J. Volker, On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder. Int. J. Numer. Methods Fluids 50 (2006) 845–862. [CrossRef] [MathSciNet] [Google Scholar]
  65. T. Warburton and J.S. Hesthaven, On the constants in hp finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192 (2003) 2765–2773. [CrossRef] [Google Scholar]
  66. M. Winter, B. Schott, A. Massing and W.A. Wall, A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions. Comput. Methods Appl. Mech. Eng. 330 (2018) 220–252. [CrossRef] [Google Scholar]
  67. G. Zhou, T. Kashiwabara and I. Oikawa, Penalty method for the stationary Navier–Stokes problems under the slip boundary condition. J. Sci. Comput. 68 (2016) 339–374. [Google Scholar]
  68. G. Zhou, T. Kashiwabara and I. Oikawa, A penalty method for the time-dependent Stokes problem with the slip boundary condition and its finite element approximation. Appl. Math. 62 (2017) 377–403. [CrossRef] [MathSciNet] [Google Scholar]
  69. G. Zhou, I. Oikawa and T. Kashiwabara, The Crouzeix–Raviart element for the Stokes equations with the slip boundary condition on a curved boundary. J. Comput. Appl. Math. 383 (2021) 113123. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you