Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 1907 - 1933 | |
DOI | https://doi.org/10.1051/m2an/2024051 | |
Published online | 10 October 2024 |
- J.P. Agnelli, E.M. Garau and P. Morin, A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM Math. Model. Numer. Anal. 48 (2014) 1557–1581. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- P.R. Amestoy, I. Duff, J.-Y. L’Excellent and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001) 15–41. [CrossRef] [MathSciNet] [Google Scholar]
- D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001/2002) 1749–1779. [Google Scholar]
- J.W. Barrett and W.B. Liu, Finite element approximation of the p-Laplacian. Math. Comp. 61 (1993) 523–537. [MathSciNet] [Google Scholar]
- J.W. Barrett and W.B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68 (1994) 437–456. [Google Scholar]
- S. Bartels, Numerical Approximation of Partial Differential Equations. Texts in Applied Mathematics. Vol. 64. Springer (2016) xv+535. [Google Scholar]
- S. Bartels, Nonconforming discretizations of convex minimization problems and precise relations to mixed methods. Comput. Math. Appl. 93 (2021) 214–229. [CrossRef] [MathSciNet] [Google Scholar]
- H. Beirão da Veiga, P. Kaplický and M. Růžička, Boundary regularity of shear-thickening flows. J. Math. Fluid Mech. 13 (2011) 387–404. [CrossRef] [MathSciNet] [Google Scholar]
- L. Belenki, L.C. Berselli, L. Diening and M. Růžička, On the Finite Element approximation of p-Stokes systems. SIAM J. Numer. Anal. 50 (2012) 373–397. [CrossRef] [MathSciNet] [Google Scholar]
- L.C. Berselli, L. Diening and M. Růžička, Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech. 12 (2010) 101–132. [CrossRef] [MathSciNet] [Google Scholar]
- D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Vol. 44. Springer, Heidelberg (2013) xiv+685. [Google Scholar]
- M. Botti, D. Castanon Quiroz, D.A. Di Pietro and A. Harnist, A hybrid high-order method for creeping flows of non-Newtonian fluids. ESAIM Math. Model. Numer. Anal. 55 (2021) 2045–2073. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, 3rd edition. Vol. 15. Springer, New York (2008) xviii+397. [Google Scholar]
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Vol. 15. Springer-Verlag, New York (1991) x+350. [Google Scholar]
- A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29 (2009) 827–855. [CrossRef] [MathSciNet] [Google Scholar]
- E. Burman and A. Ern, Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian. C. R. Math. Acad. Sci. Paris 346 (2008) 1013–1016. [CrossRef] [MathSciNet] [Google Scholar]
- R. Bustinza and G. Gatica, A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics. J. Comput. Phys. 207 (2005) 427–456. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cesmelioglu, B. Cockburn and W. Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steadystate incompressible Navier–Stokes equations. Math. Comput. 86 (2017) 1643–1670. [Google Scholar]
- B. Cockburn and J. Shen, A hybridizable discontinuous Galerkin method for the p-Laplacian. SIAM J. Sci. Comput. 38 (2016) A545–A566. [CrossRef] [Google Scholar]
- B. Cockburn, G. Kanschat and D. Schötzau, A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74 (2005) 1067–1095. [Google Scholar]
- B. Cockburn, G. Kanschat and D. Schötzau, An equal-order DG method for the incompressible Navier–Stokes equations. J. Sci. Comput. 40 (2009) 188–210. [CrossRef] [MathSciNet] [Google Scholar]
- S. Congreve, P. Houston, E. Süli and T.P. Wihler, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: strongly monotone quasi-Newtonian flows. IMA J. Numer. Anal. 33 (2013) 1386–1415. [CrossRef] [MathSciNet] [Google Scholar]
- D. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79 (2010) 1303–1330. [CrossRef] [Google Scholar]
- D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques and Applications. Vol. 69. Springer, Heidelberg (2012) xviii+384. [Google Scholar]
- L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20 (2008) 523–556. [Google Scholar]
- L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46 (2008) 614–638. [Google Scholar]
- L. Diening, M. Růžička and K. Schumacher, A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35 (2010) 87–114. [CrossRef] [MathSciNet] [Google Scholar]
- L. Diening, P. Harjulehto, P. H¨astö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011). [Google Scholar]
- L. Diening, C. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51 (2013) 984–1015. [Google Scholar]
- L. Diening, D. Kröner, M. Růžička and I. Toulopoulos, A Local Discontinuous Galerkin approximation for systems with p-structure. IMA J. Num. Anal. 34 (2014) 1447–1488. [CrossRef] [Google Scholar]
- I. Drelichman, R.G. Durán and I. Ojea, A weighted setting for the numerical approximation of the Poisson problem with singular sources. SIAM J. Numer. Anal. 58 (2020) 590–606. [CrossRef] [MathSciNet] [Google Scholar]
- I. Ekeland and R. Témam, Convex Analysis and Variational Problems. Classics in Applied Mathematics, english edition. Vol. 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1999) xiv+402. Translated from the French. [Google Scholar]
- A. Ern and J.L. Guermond, Finite Elements I: Approximation and Interpolation. Texts in Applied Mathematics. Springer International Publishing (2021) 325. [Google Scholar]
- P. Farrell, P.A. Gazca Orozco and E. Süli, Finite element approximation and preconditioning for anisothermal flow of implicitly-constituted non-Newtonian fluids. Math. Comput. 91 (2022) 659–697. [Google Scholar]
- G.N. Gatica and F.A. Sequeira, Analysis of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 65 (2015) 1270–1308. [CrossRef] [MathSciNet] [Google Scholar]
- M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986) 55–99. [CrossRef] [MathSciNet] [Google Scholar]
- V. Girault and P. Raviart, Finite Element Methods for Navier–Stokes Equations. Springer (1986). [CrossRef] [Google Scholar]
- E. Giusti, Direct Methods in the Calculus of Variations. World Scientific Publishing Co. Inc, River Edge, NJ (2003). [CrossRef] [Google Scholar]
- A. Hirn, Approximation of the p-Stokes equations with equal-order finite elements. J. Math. Fluid Mech. 15 (2013) 65–88. [Google Scholar]
- J.D. Hunter, Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9 (2007) 90–95. [NASA ADS] [CrossRef] [Google Scholar]
- J. Jeßberger and A. Kaltenbach, Finite element discretization of the steady, generalized Navier–Stokes equations with inhomogeneous Dirichlet boundary conditions. SIAM J. Numer. Anal. 62 (2024) 1660–1686. [CrossRef] [MathSciNet] [Google Scholar]
- A. Kaltenbach and M. Růžička, Convergence analysis of a Local Discontinuous Galerkin approximation for nonlinear systems with balanced Orlicz-structure. ESAIM Math. Model. Numer. Anal. 57 (2023) 1381–1411. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- A. Kaltenbach and M. Růžička, A Local Discontinuous Galerkin approximation for the p-Navier–Stokes system, part I: convergence analysis. SIAM J. Num. Anal. 61 (2023) 1613–1640. [CrossRef] [Google Scholar]
- A. Kaltenbach and M. Růžička, A Local Discontinuous Galerkin approximation for the p-Navier–Stokes system, Part II: convergence rates for the velocity. SIAM J. Num. Anal. 61 (2023) 1641–1663. [CrossRef] [Google Scholar]
- A. Kaltenbach and M. Růžička, A Local Discontinuous Galerkin approximation for the p-Navier–Stokes system, Part III: convergence rates for the pressure. SIAM J. Num. Anal. 61 (2023) 1763–1782. [CrossRef] [Google Scholar]
- P. Kaplický, J. Málek and J. Stará, C1,α-regularity of weak solutions to a class of nonlinear fluids in two dimensions – stationary Dirichlet problem. Zap. Nauchn. Sem. Pt. Odel. Mat. Inst. 259 (1999) 89–121. [Google Scholar]
- P. Keast, Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Eng. 55 (1986) 339–348. [CrossRef] [Google Scholar]
- S. Ko and E. Süli, Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index. Math. Comput. 88 (2019) 1061–1090. [Google Scholar]
- S. Ko, P. Pustějovská and E. Süli, Finite element approximation of an incompressible chemically reacting non-Newtonian fluid. ESAIM Math. Model. Numer. Anal. 52 (2018) 509–541. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific Publishing Co. Inc., River Edge, NJ (1991) xii+233. [Google Scholar]
- C. Kreuzer and E. Süli, Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. ESAIM Math. Model. Numer. Anal. 50 (2016) 1333–1369. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- H.W. Kuhn, Some combinatorial lemmas in topology. IBM J. Res. Dev. 4 (1960) 508–524. [Google Scholar]
- M. Křepela and M. Růžička, A counterexample related to the regularity of the p-Stokes problem. J. Math. Sci. (N.Y.) 232 (2018) 390–401. [CrossRef] [MathSciNet] [Google Scholar]
- M. Křepela and M. Růžička, Addendum to article: “A counterexample related to the regularity of the p-Stokes problem”. J. Math. Sci. (N.Y.) 247 (2020) 957–959. [CrossRef] [MathSciNet] [Google Scholar]
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris; Gauthier-Villars, Paris (1969) xx+554. [Google Scholar]
- A. Logg and G.N. Wells, Dolfin: automated finite element computing. ACM Trans. Math. Softw. 37 (2010) 1–28. [CrossRef] [Google Scholar]
- J. Málek and K.R. Rajagopal, Mathematical issues concerning the Navier–Stokes equations and some of its generalizations, in Handbook of Differential Equations: Evolutionary Equations. Vol. 2. Elsevier/North-Holland, Amsterdam (2005) 371–459. [CrossRef] [Google Scholar]
- J. Málek, K.R. Rajagopal and M. Růžička, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci. 5 (1995) 789–812. [Google Scholar]
- T. Malkmus, M. Růžička, S. Eckstein and I. Toulopoulos, Generalizations of SIP methods to systems with p-structure. IMA J. Numer. Anal. 38 (2018) 1420–1451. [CrossRef] [MathSciNet] [Google Scholar]
- J. Musielak, Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics. Vol. 1034. Springer-Verlag, Berlin (1983) iii+222. [Google Scholar]
- N.C. Nguyen, J. Peraire and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230 (2011) 1147–1170. [CrossRef] [MathSciNet] [Google Scholar]
- R.H. Nochetto, E. Otárola and A.J. Salgado, Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132 (2016) 85–130. [Google Scholar]
- W. Qiu and K. Shi, Analysis on an HDG method for the p-Laplacian equations. J. Sci. Comput. 80 (2019) 1019–1032. [CrossRef] [MathSciNet] [Google Scholar]
- K. Rajagopal, Mechanics of non-Newtonian fluids, in Recent Developments in Theoretical Fluid Mechanics. Research Notes in Mathematics Series, edited by G. Galdi and J. Nečas. Vol. 291. Longman (1993) 129–162. [Google Scholar]
- B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. Front. Appl. Math. Vol. 35. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008). [Google Scholar]
- M. Růžička and L. Diening, Non-Newtonian fluids and function spaces, in Nonlinear Analysis, Function Spaces and Applications, Proceedings of NAFSA 2006 Prague. Vol. 8. (2007) 95–144. [Google Scholar]
- D. Sandri, Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. RAIRO Modél. Math. Anal. Numér. 27 (1993) 131–155. [MathSciNet] [Google Scholar]
- E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series. Vol. 30. Princeton University Press, Princeton, NJ (1970) xiv+290. [Google Scholar]
- G. Strang and G. Fix, An Analysis of the Finite Element Method, 2nd edition. Wellesley-Cambridge Press, Wellesley, MA (2008) x+402. [Google Scholar]
- C. Truesdell and W. Noll, The non-linear field theories of mechanics, in Handbuch der Physik. Vol. III/3. Springer, New York (1965). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.