Open Access
Issue
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
Page(s) 1935 - 1958
DOI https://doi.org/10.1051/m2an/2024058
Published online 10 October 2024
  1. D. Aregba-Driollet and V. Milišić, Kinetic approximation of a boundary value problem for conservation laws. Numer. Math. 97 (2004) 595–633. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Aregba-Driollet and R. Natalini, Discrete kinetic schemes for systems of conservation laws, in Hyperbolic Problems: Theory, Numerics, Applications, Vol. I (Zürich, 1998). Vol. 129 of Int. Ser. Numer. Math. Birkh¨auser, Basel (1999). [Google Scholar]
  3. D. Aregba-Driollet and R. Natalini, Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37 (2000) 1973–2004. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Baty, F. Drui, P. Helluy, E. Franck, C. Klingenberg and L. Thanh¨auser, A robust and efficient solver based on kinetic schemes for magnetohydrodynamics (MHD) equations. Appl. Math. Comput. 440 (2023) 127667. [Google Scholar]
  5. T. Bellotti, Monotonicity for genuinely multi-step methods: results and issues from a simple lattice boltzmann scheme, in International Conference on Finite Volumes for Complex Applications. Springer (2023) 33–41. [Google Scholar]
  6. T. Bellotti, Numerical analysis of lattice Boltzmann schemes: from fundamental issues to efficient and accurate adaptive methods. Ph.D. Thesis, Institut Polytechnique de Paris, École Polytechnique (2023). [Google Scholar]
  7. T. Bellotti, Truncation errors and modified equations for the lattice Boltzmann method via the corresponding finite difference schemes. ESAIM Math. Model. Numer. Anal. 57 (2023) 1225–1255. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. T. Bellotti, The influence of parasitic modes on stable lattice Boltzmann schemes and weakly unstable multi-step Finite Difference schemes. Preprint hal-04358349v2 (2024). [Google Scholar]
  9. T. Bellotti, Initialisation from lattice Boltzmann to multi-step finite difference methods: modified equations and discrete observability. J. Comput. Phys. 504 (2024) 112871. [CrossRef] [Google Scholar]
  10. T. Bellotti, B. Graille and M. Massot, Finite difference formulation of any lattice Boltzmann scheme. Numer. Math. 152 (2022) 1–40. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Caetano, F. Dubois and B. Graille, A result of convergence for a mono-dimensional two-velocities lattice Boltzmann scheme. Discrete Contin. Dyn. Syst. Preprint arXiv:1905.12393 (2023). [Google Scholar]
  12. D. Coulette, E. Franck, P. Helluy, M. Mehrenberger and L. Navoret, High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation. Comput. Fluids 190 (2019) 485–502. [CrossRef] [MathSciNet] [Google Scholar]
  13. D. Coulette, C. Courtès, E. Franck and L. Navoret, Vectorial kinetic relaxation model with central velocity. Application to implicit relaxations schemes. Commun. Comput. Phys. 27 (2020) 976–1013. [CrossRef] [MathSciNet] [Google Scholar]
  14. M.G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws. Math. Comput. 34 (1980) 1–21. [Google Scholar]
  15. P.J. Dellar, An interpretation and derivation of the lattice Boltzmann method using Strang splitting. Comput. Math. Appl. 65 (2013) 129–141. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Dubois, Equivalent partial differential equations of a lattice Boltzmann scheme. Comput. Math. Appl. 55 (2008) 1441–1449. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Dubois, B. Graille and S.V. Raghurama Rao, A notion of non-negativity preserving relaxation for a monodimensional three velocities scheme with relative velocity. J. Comput. Sci. 47 (2020) 101181. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Graille, Approximation of mono-dimensional hyperbolic systems: a lattice Boltzmann scheme as a relaxation method. J. Comput. Phys. 266 (2014) 74–88. [CrossRef] [MathSciNet] [Google Scholar]
  19. K. Guillon, R. Hélie and P. Helluy, Stability analysis of the vectorial lattice-Boltzmann method. Preprint arXiv:2402.09813 (2023). [Google Scholar]
  20. R. Hélie, Schéma de relaxation pour la simulation de plasmas dans les tokamaks. Ph.D. Thesis, Université de Strasbourg (2023). [Google Scholar]
  21. S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48 (1995) 235–276. [Google Scholar]
  22. T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva and E.M. Viggen, The Lattice Boltzmann Method: Principles and Practice. Graduate Texts in Physics. Springer, Cham (2017). [CrossRef] [Google Scholar]
  23. S.N. Kružkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. [Google Scholar]
  24. P. Lax and B. Wendroff, Systems of conservation laws. Comm. Pure Appl. Math. 13 (1960) 217–237. [CrossRef] [Google Scholar]
  25. V. Milišić, Stability and convergence of discrete kinetic approximations to an initial-boundary value problem for conservation laws. Proc. Amer. Math. Soc. 131 (2003) 1727–1737. [CrossRef] [MathSciNet] [Google Scholar]
  26. R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Differ. Equ. 148 (1998) 292–317. [CrossRef] [Google Scholar]
  27. S. Simonis, M. Frank and M.J. Krause, On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection-diffusion equations. Philos. Trans. R. Soc. A 378 (2020) 20190400. [CrossRef] [PubMed] [Google Scholar]
  28. S. Simonis, M. Frank and M.J. Krause, Constructing relaxation systems for lattice Boltzmann methods. Appl. Math. Lett. 137 (2023) 108484. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you