Open Access
Issue
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
Page(s) 519 - 552
DOI https://doi.org/10.1051/m2an/2024067
Published online 16 January 2025
  1. M.R. Matthews, B.P. Anderson, P. Haljan, D. Hall, C. Wieman and E.A. Cornell, Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83 (1999) 2498. [CrossRef] [Google Scholar]
  2. K.W. Madison, F. Chevy, W. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84 (2000) 806. [CrossRef] [PubMed] [Google Scholar]
  3. J.R. Abo-Shaeer, C. Raman, J.M. Vogels and W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates. Science 292 (2001) 476–479. [CrossRef] [PubMed] [Google Scholar]
  4. C. Raman, J. Abo-Shaeer, J. Vogels, K. Xu and W. Ketterle, Vortex nucleation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 87 (2001) 210402. [CrossRef] [PubMed] [Google Scholar]
  5. A. Aftalion and Q. Du, Vortices in a rotating Bose–Einstein condensate: critical angular velocities and energy diagrams in the Thomas–Fermi regime. Phys. Rev. A 64 (2001) 063603. [CrossRef] [Google Scholar]
  6. A. Penckwitt, R. Ballagh and C. Gardiner, Nucleation, growth, and stabilization of Bose–Einstein condensate vortex lattices. Phys. Rev. Lett. 89 (2002) 260402. [CrossRef] [PubMed] [Google Scholar]
  7. S. K. Adhikari and P. Muruganandam, Effect of an impulsive force on vortices in a rotating Bose–Einstein condensate. Phys. Lett. A 301 (2002) 333–339. [CrossRef] [Google Scholar]
  8. I. Coddington, P. Haljan, P. Engels, V. Schweikhard, S. Tung and E.A. Cornell, Experimental studies of equilibrium vortex properties in a Bose-condensed gas. Phys. Rev. A 70 (2004) 063607. [CrossRef] [Google Scholar]
  9. W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states in Bose–Einstein condensation. Math. Models Methods Appl. Sci. 15 (2005) 1863–1896. [CrossRef] [MathSciNet] [Google Scholar]
  10. W. Bao, P.A. Markowich and H. Wang, Ground, symmetric and central vortex states in rotating Bose–Einstein condensates. Commun. Math. Sci. 3 (2005) 57–88. [CrossRef] [MathSciNet] [Google Scholar]
  11. W. Bao, Q. Du and Y. Zhang, Dynamics of rotating Bose–Einstein condensates and its efficient and accurate numerical computation. SIAM J. Appl. Math. 66 (2006) 758–786. [CrossRef] [MathSciNet] [Google Scholar]
  12. Y. Zhang, W. Bao and H. Li, Dynamics of rotating two-component Bose–Einstein condensates and its efficient computation. Phys. D Nonlinear Phenom. 234 (2007) 49–69. [CrossRef] [Google Scholar]
  13. W. Bao, H. Li and J. Shen, A generalized-Laguerre–Fourier–Hermite pseudospectral method for computing the dynamics of rotating Bose–Einstein condensates. SIAM J. Sci. Comput. 31 (2009) 3685–3711. [CrossRef] [MathSciNet] [Google Scholar]
  14. W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6 (2013) 1–135. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Besse, G. Dujardin and I. Lacroix-Violet, High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose–Einstein condensates. SIAM J. Numer. Anal. 55 (2017) 1387–1411. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Henning and A. Målqvist, The finite element method for the time-dependent Gross–Pitaevskii equation with angular momentum rotation. SIAM J. Numer. Anal. 55 (2017) 923–952. [CrossRef] [MathSciNet] [Google Scholar]
  17. W. Bao, Y. Cai and X. Ruan, Ground states of Bose–Einstein condensates with higher order interaction. Phys. D Nonlinear Phenom. 386 (2019) 38–48. [CrossRef] [Google Scholar]
  18. A.N. da Silva, R.K. Kumar, A.S. Bradley and L. Tomio, Vortex generation in stirred binary Bose–Einstein condensates. Phys. Rev. A 107 (2023) 033314. [CrossRef] [Google Scholar]
  19. H. Chen, G. Dong, W. Liu and Z. Xie, Second-order flows for computing the ground states of rotating Bose–Einstein condensates. J. Comput. Phys. 475 (2023) 111872. [CrossRef] [Google Scholar]
  20. R. Seiringer, Gross–Pitaevskii theory of the rotating Bose gas. Commun. Math. Phys. 229 (2002) 491–509. [CrossRef] [Google Scholar]
  21. A. Aftalion, R.L. Jerrard and J. Royo-Letelier, Non-existence of vortices in the small density region of a condensate. J. Funct. Anal. 260 (2011) 2387–2406. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Correggi and N. Rougerie, Inhomogeneous vortex patterns in rotating Bose–Einstein condensates. Commun. Math. Phys. 321 (2013) 817–860. [CrossRef] [Google Scholar]
  23. L. Pitaevskii and S. Stringari, Bose–Einstein Condensation and Superfluidity. Vol. 164. Oxford University Press (2016). [CrossRef] [Google Scholar]
  24. P. Henning and D. Peterseim, Crank–Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials. Math. Models Methods Appl. Sci. 27 (2017) 2147–2184. [CrossRef] [MathSciNet] [Google Scholar]
  25. T. Cazenave, Semilinear Schrödinger Equations. Vol. 10. American Mathematical Society (2003). [Google Scholar]
  26. C. Hao, L. Hsiao and H.-L. Li, Global well posedness for the Gross–Pitaevskii equation with an angular momentum rotational term in three dimensions. J. Math. Phys. 48 (2007) 102105. [CrossRef] [MathSciNet] [Google Scholar]
  27. E.H. Lieb and R. Seiringer, Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264 (2006) 505–537. [CrossRef] [Google Scholar]
  28. J. Williams, R. Walser, C. Wieman, J. Cooper and M. Holland, Achieving steady-state Bose–Einstein condensation. Phys. Rev. A 57 (1998) 2030. [CrossRef] [Google Scholar]
  29. I. Zapata, F. Sols and A.J. Leggett, Josephson effect between trapped Bose–Einstein condensates. Phys. Rev. A 57 (1998) R28. [CrossRef] [Google Scholar]
  30. B. Nikolić, A. Balaž and A. Pelster, Dipolar Bose–Einstein condensates in weak anisotropic disorder. Phys. Rev. A 88 (2013) 013624. [CrossRef] [Google Scholar]
  31. J. Sanz-Serna, Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comput. 43 (1984) 21–27. [CrossRef] [Google Scholar]
  32. G.D. Akrivis, V.A. Dougalis and O.A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59 (1991) 31–53. [CrossRef] [MathSciNet] [Google Scholar]
  33. Y. Tourigny, Optimal H1 estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11 (1991) 509–523. [CrossRef] [MathSciNet] [Google Scholar]
  34. J. Wang, A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60 (2014) 390–407. [CrossRef] [MathSciNet] [Google Scholar]
  35. C. Döding and P. Henning, Uniform L-bounds for energy-conserving higher-order time integrators for the Gross–Pitaevskii equation with rotation. Preprint arXiv:2210.01553 (2022). [Google Scholar]
  36. P. Henning and J. W¨arnegård, A note on optimal H1-error estimates for Crank–Nicolson approximations to the nonlinear Schrödinger equation. BIT Numer. Math. 61 (2021) 37–59. [CrossRef] [Google Scholar]
  37. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer (2008). [Google Scholar]
  38. D. Shi, J. Wang and F. Yan, Unconditional superconvergence analysis for nonlinear parabolic equation with EQrot1 nonconforming finite element. J. Sci. Comput. 70 (2017) 85–111. [CrossRef] [MathSciNet] [Google Scholar]
  39. W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math. Comput. 82 (2013) 99–128. [Google Scholar]
  40. E. Gagliardo, Proprieta di alcune classi di funzioni in piu variabili. Matematika 5 (1961) 87–116. [Google Scholar]
  41. M. Fila and M. Winkler, A Gagliardo–Nirenberg-type inequality and its applications to decay estimates for solutions of a degenerate parabolic equation. Adv. Math. 357 (2019) 106823. [CrossRef] [MathSciNet] [Google Scholar]
  42. C. Carstensen, R. Khot and A.K. Pani, A priori and a posteriori error analysis of the lowest-order NCVEM for second-order linear indefinite elliptic problems. Numer. Math. 151 (2022) 551–600. [CrossRef] [MathSciNet] [Google Scholar]
  43. G. Leoni, A First Course in Sobolev Spaces, 2nd edition. American Mathematical Society (2017). [CrossRef] [Google Scholar]
  44. Q. Lin and J. Lin, Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006). [Google Scholar]
  45. D. Shi, F. Wang, M. Fan and Y. Zhao, A new approach of the lowest order anisotropic mixed finite element high accuracy analysis for nonlinear sine-Gordon equations. Math. Numer. Sin. 37 (2015) 148. [MathSciNet] [Google Scholar]
  46. W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25 (2004) 1674–1697. [CrossRef] [MathSciNet] [Google Scholar]
  47. W. Bao and H. Wang, An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose–Einstein condensates. J. Comput. Phys. 217 (2006) 612–626. [CrossRef] [MathSciNet] [Google Scholar]
  48. P. Henning and J. W¨arnegård, Superconvergence of time invariants for the Gross–Pitaevskii equation. Math. Comput. 91 (2022) 509–555. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you