Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 789 - 813 | |
DOI | https://doi.org/10.1051/m2an/2025005 | |
Published online | 24 March 2025 |
- G. Allaire, Homogénéisation des équations de Stokes et de Navier–Stokes. Ph.D. thesis, Centre d’Etudes Nucléaires de Saclay (1990). http://inis.iaea.org/search/search.aspx?orig_q=RN:22020229. CEA-N–2638. [Google Scholar]
- G. Allaire, Continuity of the Darcy’s law in the low-volume fraction limit. Annali della Scuola Normale Superiore di Pisa – Classe di Scienze 18 (1991) 475–499. http://www.numdam.org/item/ASNSP_1991_4_18_4_475_0. [Google Scholar]
- G. Allaire, Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes I: abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113 (1991) 209–259. [CrossRef] [Google Scholar]
- G. Allaire, Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes II: non-critical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 113 (1991) 261–298. [Google Scholar]
- G. Allaire, Homogenization of the Navier–Stokes equations and derivation of Brinkman’s law, in Mathématiques appliquées aux sciences de l’ingénieur: 2e colloque franco-chilien de mathématiques appliquées (Santiago, 1989), edited by C. Carasso, C. Conca, J.-P. Puel and R. Correa. Cépaduès (1991) 7–20. [Google Scholar]
- G. Allaire, Homogenization of the unsteady Stokes equations in porous media, in Progress in Partial Differential Equations: Calculus of Variations, Applications. Pitman Research Notes in Mathematics Series, edited by C. Bandle, J. Bemelmans, M. Chipot, M. Grüter and J. Saint Jean Paulin. Vol. 267. Longman Scientific & Technical (1992) 109. [Google Scholar]
- G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [Google Scholar]
- G. Allaire, CEA-EDF-INRIA school on homogenization, December 13–16, Lecture 2 (2010). http://www.cmap.polytechnique.fr/ãllaire/homog/. [Google Scholar]
- H. Babovsky, Die Boltzmann-Gleichung: Modellbildung-Numerik-Anwendungen. Springer/Vieweg+Teubner (1998). [Google Scholar]
- B. Bang and D. Lukkassen, Application of homogenization theory related to Stokes flow in porous media. App. Math. 44 (1999) 309–319. [Google Scholar]
- J. Bear, Dynamics of Fluids in Porous Media. American Elsevier Publishing Co (1972). [Google Scholar]
- P.L. Bhatnagar, E.P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (1954) 511–525. [CrossRef] [Google Scholar]
- H. Brinkman, On the permeability of media consisting of closely packed porous particles. Flow Turbul. Combust. 1 (1949) 81. [CrossRef] [Google Scholar]
- F. Bukreev, S. Simonis, A. Kummerl¨ander, J. Jessberger and M.J. Krause, Consistent lattice Boltzmann methods for the volume averaged Navier–Stokes equations. J. Comput. Phys. 490 (2023) 112301. [Google Scholar]
- M.P. Dalwadi, I.M. Griffiths and M. Bruna, Understanding how porosity gradients can make a better filter using homogenization theory. Proc. R. Soc. A 471 (2015) 20150464. [Google Scholar]
- D. Dapelo, S. Simonis, M.J. Krause and J. Bridgeman, Lattice–Boltzmann coupled models for advection–diffusion flow on a wide range of Péclet numbers. J. Comput. Sci. 51 (2021) 101363. [Google Scholar]
- H.P.G. Darcy, Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc. V. Dalamont (1856). [Google Scholar]
- J. Fabricius, E. Miroshnikova and P. Wall, Homogenization of the Stokes equation with mixed boundary condition in a porous medium. Cogent Math. 4 (2017) 1327502. [Google Scholar]
- E. Feireisl, A. Novotný and T. Takahashi, Homogenization and singular limits for the complete Navier–Stokes–Fourier system. J. Pure Appl. Math. 94 (2010) 33–57. [CrossRef] [Google Scholar]
- E. Feireisl, Y. Namlyeyeva and Š. Nečasová, Homogenization of the evolutionary Navier–Stokes system. Math. Manuscripts 149 (2016) 251–274. [Google Scholar]
- F. Feppon, High order homogenization of the Stokes system in a periodic porous medium. SIAM J. Math. Anal. 53 (2021) 2890–2924. [CrossRef] [MathSciNet] [Google Scholar]
- F. Feppon and W. Jing, High order homogenized Stokes models capture all three regimes. SIAM J. Math. Anal. 54 (2022) 5013–5040. [Google Scholar]
- P. Forchheimer, Wasserbewegung durch Boden. Zeitschrift des Vereins deutscher Ingenieure 45 (1901) 1782–1788. [Google Scholar]
- T.A. Ghezzehei and D. Or, Pore-space dynamics in a soil aggregate bed under a static external load. Soil Sci. Soc. Am. J. 67 (2003) 12–19. [Google Scholar]
- A.N. Gorban, Hilbert’s sixth problem: the endless road to rigour. Philos. Trans. R. Soc. A 376 (2018) 20170238. [Google Scholar]
- M. Griebel and M. Klitz, Homogenisation and numerical simulation of flow in geometries with textile microstructures. SIAM Multiscale Model. Simul. 8 (2010) 1439–1460. [Google Scholar]
- Z. Guo and T. Zhao, Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66 (2002) 036304. [CrossRef] [Google Scholar]
- Z. Guo, J. Li and K. Xu, Unified preserving properties of kinetic schemes. Phys. Rev. E 107 (2023) 025301. [Google Scholar]
- M. Haussmann, S. Simonis, H. Nirschl and M.J. Krause, Direct numerical simulation of decaying homogeneous isotropic turbulence – numerical experiments on stability, consistency and accuracy of distinct lattice Boltzmann methods. Int. J. Modern Phys. C 30 (2019) 1–29. [Google Scholar]
- M. Haussmann, P. Reinshaus, S. Simonis, H. Nirschl and M.J. Krause, Fluid–structure interaction simulation of a coriolis mass flowmeter using a lattice Boltzmann method. Fluids 6 (2021) 167. [Google Scholar]
- X. He and L.-S. Luo, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56 (1997) 6811–6817. [Google Scholar]
- U. Hornung, Homogenization and Porous Media. Vol. 6. Springer, New York (1997). [Google Scholar]
- M. Junk, A. Klar and L.-S. Luo, Asymptotic analysis of the lattice Boltzmann equation. J. Comput. Phys. 210 (2005) 676–704. [CrossRef] [MathSciNet] [Google Scholar]
- M. Klitz, Homogenised fluid flow equations in porous media with application to permeability computations in textiles. Diploma thesis, Institut für Numerische Simulation, Universit¨at Bonn (2006). http://wissrech.ins.uni-bonn.de/teaching/diplom/diplom_klitz.pdf. [Google Scholar]
- M.J. Krause, Fluid flow simulation and optimisation with lattice Boltzmann methods on high performance computers: application to the human respiratory system. Doctoral thesis, Karlsruhe Institute of Technology (KIT) (2010). https://publikationen.bibliothek.kit.edu/1000019768. [Google Scholar]
- M.J. Krause, G. Th¨ater and V. Heuveline, Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods. Comput. Math. App. 65 (2013) 945–960. [Google Scholar]
- M.J. Krause, A. Kummerl¨ander, S.J. Avis, H. Kusumaatmaja, D. Dapelo, F. Klemens, M. Gaedtke, N. Hafen, A. Mink, R. Trunk, J.E. Marquardt, M.-L. Maier, M. Haussmann and S. Simonis, OpenLB – Open source lattice Boltzmann code. Comput. Math. App. 81 (2021) 258–288. [Google Scholar]
- A. Kummerl¨ander, M. Dorn, M. Frank and M.J. Krause, Implicit propagation of directly addressed grids in lattice Boltzmann methods. Concurrency Comput. Pract. Exp. 35 (2022) e7509. [Google Scholar]
- A. Kummerl¨ander, F. Bukreev, S.F.R. Berg, M. Dorn and M.J. Krause, Advances in computational process engineering using lattice Boltzmann methods on high performance computers, in High Performance Computing in Science and Engineering’22, edited by W.E. Nagel, D.H. Kröner and M.M. Resch. Springer Nature Switzerland, Cham (2024) 233–247. [Google Scholar]
- P. Lallemand and L.-S. Luo, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61 (2000) 6546. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- P. Lallemand, L.-S. Luo, M. Krafczyk and W.-A. Yong, The lattice Boltzmann method for nearly incompressible flows. J. Comput. Phys. 431 (2021) 109713. [Google Scholar]
- V. Laptev, Numerical solution of coupled flow in plain and porous media. Doctoral thesis, Technische Universit¨at Kaiserslautern, 2003. http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-17312. [Google Scholar]
- J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934) 193–248. [Google Scholar]
- A. Mikelić, Homogenization of nonstationary Navier–Stokes equations in a domain with a grained boundary. Annali di Matematica Pura ed Applicata 158 (1991) 167–179. [Google Scholar]
- A. Mikelić, Mathematical derivation of the Darcy-type law with memory effects, governing transient flow through porous medium. Glasnik Matematicki 29 (1994) 57–77. [Google Scholar]
- A. Mink, K. Schediwy, C. Posten, H. Nirschl, S. Simonis and M.J. Krause, Comprehensive computational model for coupled fluid flow, mass transfer, and light supply in tubular photobioreactors equipped with glass sponges. Energies 15 (2022) 7671. [Google Scholar]
- S. Mischler, Uniqueness for the BGK-equation in RN and rate of convergence for a semi-discrete scheme. Differ. Integral Equ. 9 (1996) 1119–1138. [Google Scholar]
- D. Nield, Convection in Porous Media, 5th edition. Springer, New York (2017). [Google Scholar]
- P. Nithiarasu, K. Seetharamu and T. Sundararajan, Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Trans. 40 (1997) 3955–3967. [Google Scholar]
- R.K. Padhy, A. Chandrasekhar and K. Suresh, FluTO: graded multi-scale topology optimization of large contact area fluid-flow devices using neural networks. Eng. Comput. 40 (2024) 971–987. [Google Scholar]
- B. Perthame, Global existence to the BGK model of Boltzmann equation. J. Differ. Equ. 82 (1989) 191–205. [Google Scholar]
- B. Perthame and M. Pulvirenti, Weighted L∞ bounds and uniqueness for the Boltzmann BGK model. Arch. Ration. Mech. Anal. 125 (1993) 289–295. [Google Scholar]
- F. Rao and Y. Jin, Possibility for survival of macroscopic turbulence in porous media with high porosity. J. Fluid Mech. 937 (2022) A17. [Google Scholar]
- L. Saint-Raymond, From the BGK model to the Navier–Stokes equations. Annales Scientifiques de l’ École Normale Supérieure 36 (2003) 271–317. [Google Scholar]
- T. Seta, Lattice Boltzmann method for fluid flows in anisotropic porous media with Brinkman equation. J. Fluid Sci. Technol. 4 (2009) 116–127. [Google Scholar]
- S. Simonis, Lattice Boltzmann methods for partial differential equations. Doctoral thesis, Karlsruhe Institute of Technology (KIT) (2023). https://publikationen.bibliothek.kit.edu/1000161726. [Google Scholar]
- S. Simonis and M.J. Krause, Forschungsnahe Lehre unter Pandemiebedingungen. Mitteilungen der Deutschen Mathematiker-Vereinigung 30 (2022) 43–45. [Google Scholar]
- S. Simonis and M.J. Krause, Limit consistency of lattice Boltzmann equations. Preprint arXiv:2208.06867 (2022). [Google Scholar]
- S. Simonis and S. Mishra, Computing statistical Navier–Stokes solutions, in Hyperbolic Balance Laws: Interplay between Scales and Randomness, edited by R. Abgrall, M. Garavello, M. Lukáčová-Medvid’ová and K. Trivisa. Number 1 in Oberwolfach Report 21. EMS Press (2024) 567–656. [Google Scholar]
- S. Simonis, M. Frank and M.J. Krause, On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection–diffusion equations. Philos. Trans. R. Soc. A 378 (2020) 20190400. [CrossRef] [PubMed] [Google Scholar]
- S. Simonis, M. Haussmann, L. Kronberg, W. Dörfler and M.J. Krause, Linear and brute force stability of orthogonal moment multiple-relaxation-time lattice Boltzmann methods applied to homogeneous isotropic turbulence. Philos. Trans. R. Soc. A 379 (2021) 20200405. [Google Scholar]
- S. Simonis, D. Oberle, M. Gaedtke, P. Jenny and M.J. Krause, Temporal large eddy simulation with lattice Boltzmann methods. J. Comput. Phys. 454 (2022) 110991. [Google Scholar]
- S. Simonis, M. Frank and M.J. Krause, Constructing relaxation systems for lattice Boltzmann methods. Appl. Math. Lett. 137 (2023) 108484. [CrossRef] [Google Scholar]
- S. Simonis, K. Dominic, A. Kummerl¨ander, N. Hafen, S. Ito, D. Dapelo, G. Th¨ater and M.J. Krause, Homogenized lattice Boltzmann methods for fluid flow through porous media - part II: discretization and numerical experiments. To appear (2025). [Google Scholar]
- S. Simonis, J. Nguyen, S.J. Avis, W. Dörfler and M.J. Krause, Binary fluid flow simulations with free energy lattice Boltzmann methods. Discrete Continuous Dyn. Syst. – S 17 (2024) 3278–3294. [Google Scholar]
- M. Siodlaczek, M. Gaedtke, S. Simonis, M. Schweiker, N. Homma and M.J. Krause, Numerical evaluation of thermal comfort using a large eddy lattice Boltzmann method. Building Environ. 192 (2021) 107618. [Google Scholar]
- M.A. Spaid and F.R. Phelan Jr., Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys. Fluids 9 (1997) 2468–2474. [Google Scholar]
- Y. Tanabe, K. Yaji and K. Ushijima, Topology optimization using the lattice Boltzmann method for unsteady natural convection problems. Struct. Multidiscipl. Optim. 66 (2023) 103. [Google Scholar]
- M. Zhong, T. Xiao, M.J. Krause, M. Frank and S. Simonis, A stochastic Galerkin lattice Boltzmann method for incompressible fluid flows with uncertainties. J. Comput. Phys. 517 (2024) 113344. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.