Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 815 - 839 | |
DOI | https://doi.org/10.1051/m2an/2025011 | |
Published online | 24 March 2025 |
- S. Baumstark, E. Faou and K. Schratz, Uniformly accurate exponential-type integrators for Klein–Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comput. 87 (2018) 1227–1254. [Google Scholar]
- W. Bao and C. Su, Uniform error bounds of a finite difference method for the Zakharov system in the subsonic limit regime via an asymptotic consistent formulation. Multiscale Model. Simul. 15 (2017) 977–1002. [Google Scholar]
- W. Bao and C. Su, Uniformly and optimally accurate methods for the Zakharov system in the subsonic limit regime. SIAM J. Sci. Comput. 40 (2018) A929–A953. [Google Scholar]
- W. Bao and C. Su, Uniform error bounds of a finite difference method for the Klein–Gordon–Zakharov system in the subsonic limit regime. Math. Comput. 87 (2018) 2133–2158. [Google Scholar]
- W. Bao and C. Su, Uniform error estimates of a finite difference method for the Klein–Gordon–Schrödinger system in the nonrelativistic and massless limit regimes. Kinet. Relat. Models 11 (2018) 1037–1062. [Google Scholar]
- W. Bao and X. Zhao, A uniformly accurate multiscale time integrator spectral method for the Klein–Gordon–Zakharov system in the high-plasma-frequency limit regime. J. Comput. Phys. 327 (2016) 270–293. [Google Scholar]
- W. Bao, Y. Cai and X. Zhao, A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52 (2014) 2488–2511. [Google Scholar]
- W. Bao, X. Dong and X. Zhao, Uniformly correct multiscale time integrators for highly oscillatory second order differential equations. J. Math. Study 47 (2014) 111–150. [Google Scholar]
- Y. Cai and Y. Wang, Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 57 (2019) 1602–1624. [Google Scholar]
- Y. Cai and Y. Wang, Uniformly accurate nested Picard iterative integrators for the nonlinear Dirac equation in the nonrelativistic regime. Multiscale Model. Simul. 20 (2022) 164–187. [MathSciNet] [Google Scholar]
- Y. Cai and X. Zhou, Uniformly accurate nested Picard iterative integrators for the Klein–Gordon equation in the nonrelativistic regime. J. Sci. Comput. 92 (2022) 53. [Google Scholar]
- R. Carles and C. Gallo, On Fourier time splitting methods for NLS equations in the semi-classical limit II. Analytic regularity. Numer. Math. 136 (2017) 315–342. [Google Scholar]
- P. Chartier, N.J. Mauser, F. M’ehats and Y. Zhang, Solving highly-oscillatory NLS with SAM: numerical efficiency and geometric properties. Disc. Contin. Dyn. Syst. Ser. S 9 (2016) 1327–1349. [Google Scholar]
- P. Chartier, F. Méhats, M. Thalhammer and Y. Zhang, Improved error estimates for splitting methods applied to highlyoscillatory nonlinear Schrödinger equations. Math. Comput. 85 (2016) 2863–2885. [CrossRef] [Google Scholar]
- P. Chartier, M. Lemou, F. Méhats and G. Vilmart, A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations. Found. Comput. Math. 20 (2020) 1–33. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Springer, New York (2002). [Google Scholar]
- M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numer. 19 (2010) 209–286. [CrossRef] [MathSciNet] [Google Scholar]
- A. Iserles, K. Kropielnicka and P. Singh, Solving Schrödinger equation in semiclassical regime with highly oscillatory timedependent potentials. J. Comput. Phys. 376 (2019) 564–584. [Google Scholar]
- J. Li, Uniformly accurate nested Picard iterative schemes for nonlinear Schrödinger equation with highly oscillatory potential. Appl. Numer. Math. 192 (2023) 132–151. [MathSciNet] [Google Scholar]
- J. Li and X. Jin, Structure-preserving exponential wave integrator methods and the long-time convergence analysis for the Klein–Gordon–Dirac equation with the small coupling constant. Numer. Methods Part. Differ. Equ. 39 (2023) 3375–3416. [Google Scholar]
- Y. Ma and C. Su, A uniformly and optimally accurate multiscale time integrator method for the Klein–Gordon–Zakharov system in the subsonic limit regime. Comput. Math. Appl. 76 (2018) 602–619. [Google Scholar]
- N. Masmoudi and K. Nakanishi, From the Klein–Gordon–Zakharov system to the nonlinear Schrödinger equation. J. Hyperbolic Differ. Equ. 2 (2005) 975–1008. [Google Scholar]
- N. Mauser, Y. Zhang and X. Zhao, On the rotating nonlinear Klein–Gordon equation: non-relativistic limit and numerical methods. Multiscale Model. Simul. 18 (2020) 999–1024. [MathSciNet] [Google Scholar]
- A. Ostermann and K. Schratz, Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18 (2018) 731–755. [CrossRef] [MathSciNet] [Google Scholar]
- A. Ostermann, F. Rousset and K. Schratz, Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math. 21 (2021) 725–765. [CrossRef] [MathSciNet] [Google Scholar]
- F. Rousset and K. Schratz, A general framework of low regularity integrators. SIAM J. Numer. Anal. 59 (2021) 1735–1768. [CrossRef] [MathSciNet] [Google Scholar]
- J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis and Applications. Springer-Verlag, Berlin Heidelberg (2011). [Google Scholar]
- C. Su and W. Yi, Error estimates of a finite difference method for the Klein–Gordon–Zakharov system in the subsonic limit regime. IMA J. Numer Anal. 38 (2018) 2055–2073. [CrossRef] [MathSciNet] [Google Scholar]
- C. Su and X. Zhao, On time-splitting methods for nonlinear Schrödinger equation with highly oscillatory potential. ESAIM Math. Model. Numer. Anal. 54 (2020) 1491–1508. [Google Scholar]
- C. Su and X. Zhao, A uniformly first-order accurate method for Klein–Gordon–Zakharov system in simultaneous high-plasma-frequency and subsonic limit regime. J. Comput. Phys. 428 (2021) 110064. [Google Scholar]
- B. Wang and X. Zhao, Geometric two-scale integrators for highly oscillatory system: uniform accuracy and near conservations. SIAM J. Numer. Anal. 61 (2023) 1246–1277. [CrossRef] [MathSciNet] [Google Scholar]
- X. Wu, B. Wang and W. Shi, Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235 (2013) 587–605. [Google Scholar]
- C. Xiong, M. Good, Y. Guo, X. Liu and K. Huang, Relativistic superfluidity and vorticity from the nonlinear Klein–Gordon equation. Phys. Rev. D 90 (2014) 125019. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.