Open Access
Issue
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
Page(s) 841 - 871
DOI https://doi.org/10.1051/m2an/2025004
Published online 24 March 2025
  1. A. Alpers, A. Brieden, P. Gritzmann, A. Lyckegaard and H.F. Poulsen, Generalized balanced power diagrams for 3D representations of polycrystals. Philos. Mag. 95 (2015) 1016–1028. [Google Scholar]
  2. A. Alpers, M. Fiedler, P. Gritzmann and F. Klemm, Dynamic grain models via fast heuristics for diagram representations. Philos. Mag. 103 (2023) 948–968. [Google Scholar]
  3. A. Alpers, M. Fiedler, P. Gritzmann and F. Klemm, Turning grain maps into diagrams. SIAM J. Imaging Sci. 16 (2023) 223–249. [Google Scholar]
  4. H. Altendorf, F. Latourte, D. Jeulin, M. Faessel and L. Saintoyant, 3D reconstruction of a multiscale microstructure by anisotropic tessellation models. Image Anal. Stereol. 33 (2014) 121–130. [CrossRef] [Google Scholar]
  5. F. Aurenhammer, A criterion for the affine equivalence of cell complexes in Rd and convex polyhedra in Rd+1. Discrete Comput. Geom. 2 (1987) 49–64. [Google Scholar]
  6. F. Aurenhammer, F. Hoffmann and B. Aronov, Minkowski-type theorems and least-squares clustering. Algorithmica 20 (1998) 61–76. [MathSciNet] [Google Scholar]
  7. F. Aurenhammer, R. Klein and D.-T. Lee, Voronoi Diagrams and Delaunay Triangulations. World Scientific (2013). [Google Scholar]
  8. E. Birgin, A. Laurain and T. Menezes, Sensitivity analysis and tailored design of minimization diagrams. Math. Comput. 92 (2023) 2715–2768. [Google Scholar]
  9. P.V.M. Blagojević and G.M. Ziegler, Convex equipartitions via equivariant obstruction theory. Israel J. Math. 200 (2014) 49–77. [Google Scholar]
  10. M. Bock, A.K. Tyagi, J.-U. Kreft and W. Alt, Generalized Voronoi tessellation as a model of two-dimensional cell tissue dynamics. Bull. Math. Biol. 72 (2010) 1696–1731. [MathSciNet] [Google Scholar]
  11. J.-D. Boissonnat, C. Wormser and M. Yvinec, Curved Voronoi diagrams, in Effective Computational Geometry for Curves and Surfaces. Springer (2006) 67–116. [Google Scholar]
  12. D.P. Bourne and S.M. Roper, Centroidal power diagrams, Lloyd’s algorithm, and applications to optimal location problems. SIAM J. Numer. Anal. 53 (2015) 2545–2569. [Google Scholar]
  13. D.P. Bourne, P.J.J. Kok, S.M. Roper and W.D.T. Spanjer, Laguerre tessellations and polycrystalline microstructures: a fast algorithm for generating grains of given volumes. Philos. Mag. 100 (2020) 2677–2707. [Google Scholar]
  14. D.P. Bourne, M. Pearce and S.M. Roper, Geometric modelling of polycrystalline materials: Laguerre tessellations and periodic semi-discrete optimal transport. Mech. Res. Commun. 127 (2023) 104023. [Google Scholar]
  15. D.P. Bourne, M. Pearce and S.M. Roper, Python code for “Inverting Laguerre tessellations: recovering tessellations from the volumes and centroids of their cells using optimal transport”. https://github.com/DPBourne/Laguerre-Polycrystalline-Microstructures (2025). [Google Scholar]
  16. A. Brieden and P. Gritzmann, On optimal weighted balanced clusterings: gravity bodies and power diagrams. SIAM J. Discrete Math. 26 (2012) 415–434. [Google Scholar]
  17. O. Busaryev, T.K. Dey, H. Wang and Z. Ren, Animating bubble interactions in a liquid foam. ACM Trans. Graphics 31 (2012) 1–8. [CrossRef] [Google Scholar]
  18. M. Buze, J. Feydy, S.M. Roper, K. Sedighiani and D.P. Bourne, Anisotropic power diagrams for polycrystal modelling: efficient generation of curved grains via optimal transport. Comput. Mater. Sci. 245 (2024) 113317. [Google Scholar]
  19. F. de Gournay, J. Kahn and L. Lebrat, Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure. Numer. Math. 141 (2018) 429–453. [Google Scholar]
  20. D. Depriester and R. Kubler, Radical Voronoi tessellation from random pack of polydisperse spheres: prediction of the cells’ size distribution. Comput.-Aided Des. 107 (2019) 37–49. [Google Scholar]
  21. A. Diez and J. Feydy, An optimal transport model for dynamical shapes, collective motion and cellular aggregates. Preprint arXiv:2402.17086 (2024). [Google Scholar]
  22. Q. Duan, D. Kroese, T. Brereton, A. Spettl and V. Schmidt, Inverting Laguerre tessellations. Comput. J. 57 (2014) 1431–1440. [Google Scholar]
  23. Z. Fan, Y. Wu, X. Zhao and Y. Lu, Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres. Comput. Mater. Sci. 29 (2004) 301–308. [Google Scholar]
  24. T.O. Gallouët, Q. Mérigot and A. Natale, Convergence of a Lagrangian discretization for barotropic fluids and porous media flow. SIAM J. Math. Anal. 54 (2022) 2990–3018. [Google Scholar]
  25. Geogram, https://github.com/BrunoLevy/geogram. Accessed: 2024-05-06. [Google Scholar]
  26. M.A. Groeber and M.A. Jackson, Dream.3D: a digital representation environment for the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3 (2014) 56–72. [CrossRef] [Google Scholar]
  27. P.M. Gruber, Convex and Discrete Geometry. Springer (2007). [Google Scholar]
  28. C. Jung and C. Redenbach, An analytical representation of the 2d Generalized Balanced Power Diagram. Comput. Geom. 121 (2024) 102101. [Google Scholar]
  29. J. Kitagawa, Q. Mérigot and B. Thibert, Convergence of a Newton algorithm for semi-discrete optimal transport. J. Eur. Math. Soc. 21 (2019) 2603–2651. [CrossRef] [MathSciNet] [Google Scholar]
  30. M. Kühn and M.O. Steinhauser, Modeling and simulation of microstructures using power diagrams: proof of the concept. Appl. Phys. Lett. 93 (2008) 034102. [Google Scholar]
  31. J. Kuhn, M. Schneider, P. Sonnweber-Ribic and T. Böhlke, Fast methods for computing centroidal Laguerre tessellations for prescribed volume fractions with applications to microstructure generation of polycrystalline materials. Comput. Methods Appl. Mech. Eng. 369 (2020) 113175. [Google Scholar]
  32. C. Lautensack and S. Zuyev, Random Laguerre tessellations. Adv. Appl. Probab. 40 (2008) 630–650. [Google Scholar]
  33. B. Lévy, A numerical algorithm for L2 semi-discrete optimal transport in 3D. ESAIM: Math. Modell. Numer. Anal. 49 (2015) 1693–1715. [Google Scholar]
  34. B. Lévy, Partial optimal transport for a constant-volume Lagrangian mesh with free boundaries. J. Comput. Phys. 451 (2022) 110838. [Google Scholar]
  35. A. Liebscher, Laguerre approximation of random foams. Philos. Mag. 95 (2015) 2777–2792. [Google Scholar]
  36. A. Lyckegaard, E.M. Lauridsen, W. Ludwig, R.W. Fonda and H.F. Poulsen, On the use of Laguerre tessellations for representations of 3D grain structures. Adv. Eng. Mater. 13 (2011) 165–170. [Google Scholar]
  37. MATLAB-SDOT, https://github.com/DPBourne/MATLAB-SDOT. Accessed: 2024-05-06. [Google Scholar]
  38. Q. Mérigot and J.-M. Mirebeau, Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport. SIAM J. Numer. Anal. 54 (2015) 3465–3492. [Google Scholar]
  39. Q. Mérigot and B. Thibert, Optimal transport: discretization and algorithms, in Geometric Partial Differential Equations – Part II. Vol. 22 of Handbook of Numerical Analysis, edited by A. Bonito and R.H. Nochetto. North-Holland (2021) 133–212. [Google Scholar]
  40. Q. Mérigot, F. Santambrogio and C. Sarrazin, Non-asymptotic convergence bounds for Wasserstein approximation using point clouds, in Proceedings of Advances in Neural Information Processing Systems 34 (NeurIPS 2021), edited by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang and J. Wortman Vaughan (2021). [Google Scholar]
  41. J. Meyron, Initialization procedures for discrete and semi-discrete optimal transport. Comput.-Aided Des. 115 (2019) 13–22. [Google Scholar]
  42. J. Meyron, Q. Mérigot and B. Thibert, Light in power: a general and parameter-free algorithm for caustic design. ACM Trans. Graphics 37 (2018) 1–13. [Google Scholar]
  43. J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edition. Springer (2006). [Google Scholar]
  44. A. Okabe, B. Boots, K. Sugihara and S.N. Chiu, Spatial Tesselations. Concepts and Applications of Voronoi Diagrams, 2nd edition. Wiley (2000). [Google Scholar]
  45. L. Petrich, J. Staněk, M. Wang, D. Westhoff, L. Heller, P. Šittner, C.E. Krill III, V. Beneš and V. Schmidt, Reconstruction of grains in polycrystalline materials from incomplete data using Laguerre tessellations. Microscopy Microanal. 25 (2019) 743–752. [Google Scholar]
  46. L. Petrich, O. Furat, M. Wang, C.E. Krill III and V. Schmidt, Efficient fitting of 3D tessellations to curved poly-crystalline grain boundaries. Front. Mater. 8 (2021) 760602. [Google Scholar]
  47. pysdot, https://github.com/sd-ot/pysdot. Accessed: 2024-05-06. [Google Scholar]
  48. R. Quey and L. Renversade, Optimal polyhedral description of 3D polycrystals: method and application to statistical and synchrotron X-ray diffraction data. Comput. Methods Appl. Mech. Eng. 330 (2018) 308–333. [Google Scholar]
  49. R. Quey, P.R. Dawson and F. Barbe, Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200 (2011) 1729–1745. [CrossRef] [Google Scholar]
  50. R.T. Rockafellar, Convex Analysis. Princeton (1970). [Google Scholar]
  51. F. Santambrogio, Optimal Transport for Applied Mathematicians. Birkh¨auser (2015). [Google Scholar]
  52. O. Šedivỳ, T. Brereton, D. Westhoff, L. Polívka, V. Beneš, V. Schmidt and A. J¨ager, 3D reconstruction of grains in polycrystalline materials using a tessellation model with curved grain boundaries. Philos. Mag. 96 (2016) 1926–1949. [Google Scholar]
  53. A. Spettl, T. Brereton, Q. Duan, T. Werz, C.E. Krill III, D.P. Kroese and V. Schmidt, Fitting Laguerre tessellation approximations to tomographic image data. Philos. Mag. 96 (2016) 166–189. [Google Scholar]
  54. K. Teferra and D.J. Rowenhorst, Direct parameter estimation for generalised balanced power diagrams. Philos. Mag. Lett. 98 (2018) 79–87. [Google Scholar]
  55. Y. Wu, W. Zhou, B. Wang and F. Yang, Modeling and characterization of two-phase composites by Voronoi diagram in the Laguerre geometry based on random close packing of spheres. Comput. Mater. Sci. 47 (2010) 951–961. [Google Scholar]
  56. S.-Q. Xin, B. Lévy, Z. Chen, L. Chu, Y. Yu, C. Tu and W. Wang, Centroidal power diagrams with capacity constraints: computation, applications, and extension. ACM Trans. Graphics 35 (2016) 244:1–244:12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you