Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 873 - 898 | |
DOI | https://doi.org/10.1051/m2an/2025010 | |
Published online | 24 March 2025 |
- D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337–344. [Google Scholar]
- D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [Google Scholar]
- B. Ayuso de Dios, F. Brezzi, L. Marini, J. Xu and L. Zikatanov, A simple preconditioner for a discontinuous Galerkin method for the Stokes problem. J. Sci. Comput. 58 (2014) 517–547. [MathSciNet] [Google Scholar]
- S. Badia, R. Codina, T. Gudi and J. Guzmán, Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity. IMA J. Numer. Anal. 34 (2013) 800–819. [Google Scholar]
- A. Baier-Reinio, S. Rhebergen and G.N. Wells, Analysis of pressure-robust embedded-hybridized discontinuous Galerkin methods for the Stokes problem under minimal regularity. J. Sci. Comput. 92 (2022) 51. [Google Scholar]
- A.T. Barker and S.C. Brenner, A mixed finite element method for the Stokes equations based on a weakly over-penalized symmetric interior penalty approach. J. Sci. Comput. 58 (2014) 290–307. [MathSciNet] [Google Scholar]
- M. Beir˜ao da Veiga, F. Dassi, D.A. Di Pietro and J. Droniou, Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes. Comput. Methods Appl. Mech. Eng. 397 (2022) 115061. [Google Scholar]
- C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 71–79. [Google Scholar]
- D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer-Verlag (2013). [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag (2008). [Google Scholar]
- S.C. Brenner, L. Owens and L.Y. Sung, A weakly over-penalized symmetric interior penalty method. Electron. Trans. Numer. Anal. 30 (2008) 107–127. [MathSciNet] [Google Scholar]
- F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [Google Scholar]
- C. Carstensen, A.K. Dond, N. Nataraj and A.K. Pani, Three first-order finite volume element methods for Stokes equations under minimal regularity assumptions. SIAM J. Numer. Anal. 56 (2018) 2648–2671. [Google Scholar]
- B. Cockburn, G. Kanschat and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31 (2007) 61–73. [CrossRef] [MathSciNet] [Google Scholar]
- M. Crouzeix and P.A. Raviart, Conforming and non-conforming finite elements methods for solving the stationary Stokes equation I. RAIRO Numér. Anal. 7 (1973) 33–76. [Google Scholar]
- D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Springer-Verlag, Berlin (2012). [Google Scholar]
- E.A. Di Pietro, A. Ern, A. Linke and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306 (2016) 175–195. [Google Scholar]
- R.S. Falk and M. Neilan, Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51 (2013) 1308–1326. [CrossRef] [MathSciNet] [Google Scholar]
- D. Frerichs and C. Merdon, Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem. IMA J. Numer. Anal. 42 (2022) 597–619. [CrossRef] [MathSciNet] [Google Scholar]
- M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11 (1977) 341–353. [MathSciNet] [Google Scholar]
- V. Girault and P.A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer-Verlag (1986). [Google Scholar]
- T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79 (2010) 2169–2189. [Google Scholar]
- J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83 (2014) 15–36. [Google Scholar]
- J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements in three dimensions. IMA J. Numer. Anal. 34 (2014) 1489–1508. [CrossRef] [MathSciNet] [Google Scholar]
- X. Hu, S. Lee, L. Mu and S.Y. Yi, Pressure-robust enriched Galerkin methods for the Stokes equations. J. Comput. Appl. Math. 436 (2024) 115449. [Google Scholar]
- V. John, A. Linke, C. Merdon, M. Neilan and L. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59 (2017) 492–544. [CrossRef] [MathSciNet] [Google Scholar]
- C. Kreuzer and P. Zanotti, Quasi-optimal and pressure-robust discretizations of the Stokes equations by new augmented Lagrangian formulations. IMA J. Numer. Anal. 40 (2020) 2553–2583. [CrossRef] [MathSciNet] [Google Scholar]
- C. Kreuzer, R. Verfürth and P. Zanotti, Quasi-optimal and pressure robust discretizations of the Stokes equations by moment- and divergence-preserving operators. Comput. Methods Appl. Math. 21 (2021) 423–443. [CrossRef] [MathSciNet] [Google Scholar]
- M. Li, S. Mao and S. Zhang, New error estimates of nonconforming mixed finite element methods for the Stokes problem. Math. Methods Appl. Sci. 37 (2014) 937–951. [Google Scholar]
- A. Linke, A divergence-free velocity reconstruction for incompressible flows. C. R. Math. Acad. Sci. Paris 350 (2012) 837–840. [Google Scholar]
- A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268 (2014) 782–800. [CrossRef] [Google Scholar]
- A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 311 (2016) 304–326. [CrossRef] [Google Scholar]
- A. Linke, G. Matthies and L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors. ESAIM Math. Model. Numer. Anal. 50 (2016) 289–309. [Google Scholar]
- A. Linke, C. Merdon, M. Neilan and F. Neumann, Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem. Math. Comput. 87 (2018) 1543–1566. [CrossRef] [Google Scholar]
- A. Linke, C. Merdon and M. Neilan, Pressure-robustness in quasi-optimal a priori estimates for the Stokes problem. Electron. Trans. Numer. Anal. 52 (2020) 281–294. [Google Scholar]
- L. Mu, Pressure robust weak Galerkin finite elementmethods for Stokes problems. SIAM J. Sci. Comput. 42 (2020) B608–B629. [Google Scholar]
- L. Mu, X. Ye and S. Zhang, A stabilizer-free, pressure-robust, and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh. SIAM J. Sci. Comput. 43 (2021) A2614–A2637. [Google Scholar]
- L. Mu, X. Ye and S. Zhang, Development of pressure-robust discontinuous Galerkin finite element methods for the Stokes problem. J. Sci. Comput. 89 (2021) 26. [Google Scholar]
- L. Mu, X. Ye and S. Zhang, A stabilizer-free pressure-robust finite element method for the Stokes equations. Adv. Comput. Math. 47 (2021) 28. [Google Scholar]
- J.C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
- J. Qin, On the convergence of some low order mixed finite elements for incompressible fluids. Ph.D. thesis, Pennsylvania State University, State College, PA (1994). [Google Scholar]
- D.C. Quiroz and D.A. Di Pietro, A pressure-robust HHO method for the solution of the incompressible Navier–Stokes equations on general meshes. IMA J. Numer. Anal. 44 (2024) 397–434. [CrossRef] [MathSciNet] [Google Scholar]
- D. Schötzau, C. Schwab and A. Tosselli, Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40 (2002) 2171–2194. [Google Scholar]
- L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Model. Math. Anal. Numer. 19 (1985) 111–143. [MathSciNet] [Google Scholar]
- Z. Shi and M. Wang, Finite Element Methods. Science Press, Beijing (2010). [Google Scholar]
- R. Stenberg and J. Videman, On the error analysis of stabilized finite element methods for the Stokes problem. SIAM J. Numer. Anal. 53 (2015) 2626–2633. [Google Scholar]
- R. Verfürth and P. Zanotti, A quasi-optimal Crouzeix–Raviart discretization of the Stokes equations. SIAM J. Numer. Anal. 57 (2019) 1082–1099. [Google Scholar]
- J. Wang and X. Ye, New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal. 45 (2007) 1269–1286. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241 (2013) 103–115. [CrossRef] [MathSciNet] [Google Scholar]
- G. Wang, L. Mu, Y. Wang and Y. He, A pressure-robust virtual element method for the Stokes problem. Comput. Methods Appl. Mech. Eng. 382 (2021) 113879. [Google Scholar]
- Z. Wang, R. Wang and J. Liu, Robust weak Galerkin finite element solvers for Stokes flow based on a lifting operator. Comput. Math. Appl. 125 (2022) 90–100. [Google Scholar]
- X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method. Int. J. Numer. Anal. Model. 17 (2020) 110–117. [Google Scholar]
- X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method for the Stokes problem on polytopal meshes. Int. J. Numer. Methods Fluids 93 (2021) 1913–1928. [Google Scholar]
- Y. Zeng, L. Zhong, F. Wang, M. Cai and S. Zhang, Low regularity error analysis for an H(div)-conforming discontinuous Galerkin approximation of Stokes problem. J. Comput. Appl. Math. 451 (2024) 116118. [Google Scholar]
- Y. Zeng, L. Zhong, F. Wang, S. Zhang and M. Cai, A pressure-robust numerical scheme for the Stokes equations based on the WOPSIP DG approach. J. Comput. Appl. Math. 445 (2024) 115819. [Google Scholar]
- S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74 (2005) 543–554. [Google Scholar]
- S. Zhang, Divergence-free finite elements on tetrahedral grids for k ≥ 6. Math. Comput. 80 (2011) 669–675. [Google Scholar]
- L. Zhao, E. J. Park and E. Chung, A pressure robust staggered discontinuous Galerkin method for the Stokes equations. Comput. Math. Appl. 128 (2022) 163–179. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.