Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 899 - 923 | |
DOI | https://doi.org/10.1051/m2an/2025009 | |
Published online | 02 April 2025 |
- A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on Rn. Birkh¨auser, Basel (2006). [Google Scholar]
- A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press, Cambridge (2007). [Google Scholar]
- W. Ao, M. Musso, F. Pacard and J. Wei, Solutions without any symmetry for semilinear elliptic problems. J. Funct. Anal. 270 (2016) 884–956. [Google Scholar]
- W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25 (2004) 1674–1697. [CrossRef] [MathSciNet] [Google Scholar]
- T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on RN. Arch. Ration. Mech. Anal. 124 (1993) 261–276. [Google Scholar]
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82 (1983) 313–345. [Google Scholar]
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82 (1983) 347–375. [Google Scholar]
- H. Berestycki, T. Gallouët and O. Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris 297 (1983) 307–310. [Google Scholar]
- C. Besse, R. Duboscq and S. Le Coz, Gradient flow approach to the calculation of stationary states on nonlinear quantum graphs. Ann. Henri Lebesgue 5 (2022) 387–428. [Google Scholar]
- C. Besse, R. Duboscq and S. Le Coz, Numerical simulations on nonlinear quantum graphs with the GraFiDi library. SMAI J. Comput. Math. 8 (2022) 1–47. [Google Scholar]
- D. Bonheure, V. Bouchez, C. Grumiau and J. van Schaftingen, Asymptotics and symmetries of least energy nodal solutions of Lane–Emden problems with slow growth. Commun. Contemp. Math. 10 (2008) 609–631. [MathSciNet] [Google Scholar]
- T. Cazenave, Semilinear Schrödinger Equations. Vol. 10 of Courant Lecture Notes in Mathematics. New York University/Courant Institute of Mathematical Sciences, New York (2003). [Google Scholar]
- Y.S. Choi and P.J. McKenna, A mountain pass method for the numerical solution of semilinear elliptic problems. Nonlinear Anal. Theory Methods Appl. 20 (1993) 417–437. [Google Scholar]
- C. Cortázar, M. García-Huidobro and C.S. Yarur, On the uniqueness of the second bound state solution of a semilinear equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 2091–2110. [Google Scholar]
- C. Cortázar, M. García-Huidobro and C.S. Yarur, On the uniqueness of sign changing bound state solutions of a semilinear equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011) 599–621. [Google Scholar]
- D.G. Costa, Z. Ding and J.M. Neuberger, A numerical investigation of sign-changing solutions to superlinear elliptic equations on symmetric domains. J. Comput. Appl. Math. 131 (2001) 299–319. [Google Scholar]
- G. Fibich, The Nonlinear Schrödinger Equation. Vol. 192 of Applied Mathematical Sciences. Springer, Cham (2015). [Google Scholar]
- M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation. J. Funct. Anal. 271 (2016) 107–135. [Google Scholar]
- B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68 (1979) 209–243. [Google Scholar]
- I. Ianni, Sign-changing radial solutions for the Schrödinger–Poisson–Slater problem. Topol. Methods Nonlinear Anal. 41 (2013) 365–385. [Google Scholar]
- M.K. Kwong, Uniqueness of positive solutions of Δu − u + up = 0 in Rn. Arch. Ration. Mech. Anal. 105 (1989) 243–266. [Google Scholar]
- P.-L. Lions, Solutions complexes d’équations elliptiques semilinéaires dans RN. C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) 673–676. [Google Scholar]
- L.A. Maia, D. Raom, R. Ruviaro and Y.D. Sobral, Mini-max algorithm via Pohozaev manifold. Nonlinearity 34 (2021) 642–668. [Google Scholar]
- W.A. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977) 149–162. [MathSciNet] [Google Scholar]
- C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Vol. 139 of Applied Mathematical Sciences. Springer-Verlag, New York (1999). [Google Scholar]
- A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications. Int. Press, Somerville, MA (2010) 597–632. [Google Scholar]
- M. Tang, Uniqueness of bound states to Δu − u + |u|p −1u = 0 in Rn, n ≥ 3. Preprint: arXiv:2409.06915 (2024). [Google Scholar]
- M. Willem, Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, 24. Birkh¨auser Boston, Inc., Boston, MA (1996). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.