Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 1177 - 1211 | |
DOI | https://doi.org/10.1051/m2an/2025025 | |
Published online | 25 April 2025 |
- A. Bonito, A. Demlow and M. Licht, A divergence-conforming finite element method for the surface Stokes equation. SIAM J. Numer. Anal. 58 (2020) 2764–2798. [CrossRef] [MathSciNet] [Google Scholar]
- P. Brandner and A. Reusken, Finite element error analysis of surface Stokes equations in stream function formulation. ESAIM Math. Model. Numer. Anal. 54 (2020) 2069–2097. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- P. Brandner, T. Jankuhn, S. Praetorius, A. Reusken and A. Voigt, Finite element discretization methods for velocity-pressure and stream function formulations of surface Stokes equations. SIAM J. Sci. Comput. 44 (2022) A1807–A1832. [CrossRef] [Google Scholar]
- S.C. Brenner and L.-Y. Sung, C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23 (2005) 83–118. [Google Scholar]
- S.C. Brenner, M. Neilan and L.-Y. Sung, Isoparametric C° interior penalty methods for plate bending problems on smooth domains. Calcolo 50 (2013) 35–67. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Cai, H. Guo and Z. Zhang, Continuous linear finite element method for biharmonic problems on surfaces. Preprint arXiv:2404.17958 (2024). [Google Scholar]
- P.G. Ciarlet and P.-A. Raviart, A mixed finite element method for the biharmonic equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974). Academic Press, New York-London (1974) 125–145. [Google Scholar]
- B. Cockburn and A. Demlow, Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces. Math. Comput. 85 (2016) 2609–2638. [CrossRef] [Google Scholar]
- B. Cockburn, G. Kanschat and D. Schotzau, A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31 (2007) 61–73. [CrossRef] [MathSciNet] [Google Scholar]
- M.C. Delfour, Tangential differential calculus and functional analysis on a C1’1 submanifold, in Differential Geometric Methods in the Control of Partial Differential Equations (Boulder, CO, 1999). Vol. 268 of Contemp. Math. AMS, Providence, RI (2000) 83–115. [CrossRef] [Google Scholar]
- A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47 (2009) 805–827. [Google Scholar]
- A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45 (2007) 421–442. [CrossRef] [MathSciNet] [Google Scholar]
- A. Demlow and M. Neilan, A tangential and penalty-free finite element method for the surface Stokes problem. SIAM J. Numer. Anal. 62 (2024) 248–272. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dziuk and C.M. Elliott, Finite element methods for surface PDEs. Acta Numer. 22 (2013) 289–396. [Google Scholar]
- S. Elcott, Y. Tong, E. Kanso, P. Schroder and M. Desbrun, Stable, circulation-preserving, simplicial fluids. AMC Trans. Graphics 26 (2007) 4–es. [CrossRef] [Google Scholar]
- G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei and R.L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191 (2002) 3669–3750. [Google Scholar]
- T.-P. Fries, Higher-order surface FEM for incompressible Navier-Stokes flows on manifolds. Int. J. Numer. Methods Fluids 88 (2018) 55–78. [Google Scholar]
- H. Hardering and S. Praetorius, Tangential errors of tensor surface finite elements. IMA J. Numer. Anal. 43 (2023) 1543–1585. [CrossRef] [MathSciNet] [Google Scholar]
- H. Hardering and S. Praetorius, Parametric finite element discretization of the surface Stokes equations. Preprint arXiv:arXiv.org:2309.00931 (2024). [Google Scholar]
- T. Jankuhn, M.A. Olshanskii and A. Reusken, Incompressible fluid problems on embedded surfaces: modeling and variational formulations. Interfaces Free Bound. 20 (2018) 353–377. [CrossRef] [MathSciNet] [Google Scholar]
- O. Kilicer, Phd thesis. Texas A&M, to appear. [Google Scholar]
- K. Larsson and M.G. Larson, A continuous/discontinuous Galerkin method and a priori error estimates for the biharmonic problem on surfaces. Math. Comput. 86 (2017) 2613–2649. [CrossRef] [Google Scholar]
- P.L. Lederer, C. Lehrenfeld and J. Schoberl, Divergence-free tangential finite element methods for incompressible flows on surfaces. Int. J. Numer. Methods Eng. 121 (2020) 2503–2533. [CrossRef] [PubMed] [Google Scholar]
- I. Nitschke, A. Voigt and J. Wensch, A finite element approach to incompressible two-phase flow on manifolds J. Fluid Mech. 708 (2012) 418–438. [Google Scholar]
- M.A. Olshanskii, A. Reusken and X. Xu, A stabilized finite element method for advection-diffusion equations on surfaces. IMA J. Numer. Anal. 34 (2014) 732–758. [CrossRef] [MathSciNet] [Google Scholar]
- K. Padberg-Gehle, S. Reuther, S. Praetorius and A. Voigt, Transfer operator-based extraction of coherent features on surfaces, in Topological Methods in Data Analysis and Visualization. IV, Math. Vis. Springer, Cham (2017) 283–297. [Google Scholar]
- A. Reusken, Stream function formulation of surface Stokes equations. IMA J. Numer. Anal. 40 (2020) 109–139. [CrossRef] [MathSciNet] [Google Scholar]
- E. Sasaki, S. Takehiro and M. Yamada, Bifurcation structure of two-dimensional viscous zonal flows on a rotating sphere. J. Fluid Mech. 774 (2015) 224–244. [CrossRef] [MathSciNet] [Google Scholar]
- J. Schoberl, C++11 implementation of finite elements in ngsolve. Tech. Rep. ASC-2014-30, Institute for Analysis and Scientific Computing; Karlsplatz 13, 1040. Vienna, Austria (2014). [Google Scholar]
- L.E. Scriven, Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem. Eng. Sci. 12 (1960) 98–108. [CrossRef] [Google Scholar]
- J.C. Slattery, L. Sagis and E.-S. Oh, Interfacial Transport Phenomena, 2nd edition. Springer, New York (2007). [Google Scholar]
- S.W. Walker, Approximating the shape operator with the surface Hellan-Herrmann-Johnson element. SIAM J. Sci. Comput. 46 (2024) A1252–A1275. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.