Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1747 - 1761 | |
DOI | https://doi.org/10.1051/m2an/2025042 | |
Published online | 26 June 2025 |
- V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations. Nonlinearity 19 (2006) 1495. [CrossRef] [MathSciNet] [Google Scholar]
- J.M. Ghidaglia and A. Marzocchi, Longtime behaviour of strongly damped wave equations, global attractors and their dimension. SIAM J. Math. Anal. 22 (1991) 879–895. [CrossRef] [MathSciNet] [Google Scholar]
- M. Ansari, E. Esmailzadeh and D. Younesian, Frequency analysis of finite beams on nonlinear Kelvin–Voight foundation under moving loads. J. Sound Vib. 330 (2011) 1455–1471. [CrossRef] [Google Scholar]
- M.S. Edalatzadeh and K.A. Morris, Stability and well-posedness of a nonlinear railway track model. IEEE Control Syst. Lett. 3 (2018) 162–167. [Google Scholar]
- G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. Theory Methods Appl. 9 (1985) 399–418. [CrossRef] [Google Scholar]
- F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006) 185–207. [CrossRef] [MathSciNet] [Google Scholar]
- W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. 9 (2020) 613–632. [Google Scholar]
- V. Pata and M. Squassina, On the strongly damped wave equation. Commun. Math. Phys. 253 (2005) 511–533. [CrossRef] [Google Scholar]
- A.N.D. Carvalho, J.W. Cholewa and T. Dlotko, Strongly damped wave problems: bootstrapping and regularity of solutions. J. Differ. Equ. 244 (2008) 2310–2333. [CrossRef] [Google Scholar]
- Y. Xie and C. Zhong, Asymptotic behavior of a class of nonlinear evolution equations. Nonlinear Anal. Theory Methods Appl. 71 (2009) 5095–5105. [CrossRef] [Google Scholar]
- V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation. J. Differ. Equ. 247 (2009) 1120–1155. [CrossRef] [Google Scholar]
- M. Yang and C. Sun, Exponential attractors for the strongly damped wave equations. Nonlinear Anal. Real World Appl. 11 (2010) 913–919. [CrossRef] [MathSciNet] [Google Scholar]
- W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. 9 (2019) 613–632. [CrossRef] [Google Scholar]
- W. Chen and A.Z. Fino, Blow-up of solutions to semilinear strongly damped wave equations with different nonlinear terms in an exterior domain. Math. Methods Appl. Sci. 44 (2021) 6787–6807. [CrossRef] [MathSciNet] [Google Scholar]
- X. Wang, R. Xu and Y. Yang, Long-time behavior for fourth order nonlinear wave equations with dissipative and dispersive terms. Appl. Numer. Math. 199 (2024) 248–265. [CrossRef] [MathSciNet] [Google Scholar]
- K. Ammari, M.M. Cavalcanti and S. Mansouri, Uniform stabilization for the semi-linear wave equation with nonlinear Kelvin–Voigt damping. Appl. Math. Opt. 90 (2024) 45. [CrossRef] [Google Scholar]
- S. Larsson, V. Thomée and L.B. Wahlbin, Finite-element methods for a strongly damped wave equation. IMA J. Numer. Anal. 11 (1991) 115–142. [Google Scholar]
- K. Djidjeli, W.G. Price and E.H. Twizell, Numerical solutions of a damped Sine-Gordon equation in two space variables. J. Eng. Math. 29 (1995) 347–369. [CrossRef] [Google Scholar]
- V. Thomée and L.B. Wahlbin, Maximum-norm estimates for finite-element methods for a strongly damped wave equation. BIT Numer. Math. 44 (2004) 165–179. [CrossRef] [Google Scholar]
- T. Achouri, Finite difference schemes for the two-dimensional semilinear wave equation. Numer. Methods Part. Differ. Equ. 35 (2019) 200–221. [CrossRef] [Google Scholar]
- P. Ljung, A. Målqvist and A. Persson, A generalized finite element method for the strongly damped wave equation with rapidly varying data. ESAIM Math. Model. Numer. Anal. 55 (2021) 1375–1404. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- Q. Wang and D. Cheng, Numerical solution of damped nonlinear Klein–Gordon equations using variational method and finite element approach. Appl. Math. Comput. 162 (2005) 381–401. [MathSciNet] [Google Scholar]
- T. Achouri, T. Kadri and K. Omrani, Analysis of finite difference schemes for a fourth-order strongly damped nonlinear wave equations. Comput. Math. Appl. 82 (2021) 74–96. [CrossRef] [MathSciNet] [Google Scholar]
- D. Phan and A. Ostermann, Exponential integrators for second-order in time partial differential equations. J. Sci. Comput. 93 (2022) 58. [CrossRef] [Google Scholar]
- O. Koch and C. Lubich, Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29 (2007) 434–454. [Google Scholar]
- C. Lubich and I.V. Oseledets, A projector-splitting integrator for dynamical low-rank approximation. BIT Numer. Math. 54 (2014) 171–188. [CrossRef] [Google Scholar]
- G. Ceruti and C. Lubich, An unconventional robust integrator for dynamical low-rank approximation. BIT Numer. Math. 62 (2022) 23–44. [CrossRef] [Google Scholar]
- G. Ceruti, J. Kusch and C. Lubich, A rank-adaptive robust integrator for dynamical low-rank approximation. BIT Numer. Math. 62 (2022) 1149–1174. [CrossRef] [Google Scholar]
- L. Einkemmer, A. Ostermann and C. Scalone, A robust and conservative dynamical low-rank algorithm. J. Comput. Phys. 484 (2023) 112060. [CrossRef] [Google Scholar]
- B. Carrel, M.J. Gander and B. Vandereycken, Low-rank Parareal: a low-rank parallel-in-time integrator. BIT Numer. Math. 63 (2023) 13. [CrossRef] [Google Scholar]
- A. Ostermann, C. Piazzola and H. Walach, Convergence of a low-rank Lie–Trotter splitting for stiff matrix differential equations. SIAM J. Numer. Anal. 57 (2019) 1947–1966. [CrossRef] [MathSciNet] [Google Scholar]
- Y.-L. Zhao, A. Ostermann and X.-M. Gu, A low-rank Lie–Trotter splitting approach for nonlinear fractional complex Ginzburg–Landau equations. J. Comput. Phys. 446 (2021) 110652. [CrossRef] [Google Scholar]
- M. Hochbruck, M. Neher and S. Schrammer, Dynamical low-rank integrators for second-order matrix differential equations. BIT Numer. Math. 63 (2023) 4. [CrossRef] [Google Scholar]
- M. Hochbruck, M. Neher and S. Schrammer, Rank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equations. BIT Numer. Math. 63 (2023) 9. [CrossRef] [Google Scholar]
- S. Schrammer, On dynamical low-rank integrators for matrix differential equations. Ph.D. thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany (2022). [Google Scholar]
- E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer–Verlet method. Acta Numer. 12 (2003) 399–450. [CrossRef] [MathSciNet] [Google Scholar]
- C. Carle and M. Hochbruck, Error analysis of multirate leapfrog-type methods for second-order semilinear ODEs. SIAM J. Numer. Anal. 60 (2022) 2897–2924. [CrossRef] [MathSciNet] [Google Scholar]
- J. Mu˜noz Matute, D. Pardo and V.M. Calo, Exploiting the Kronecker product structure of φ-functions in exponential integrators. Int. J. Numer. Methods Eng. 123 (2022) 2142–2161. [CrossRef] [Google Scholar]
- C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45 (2003) 3–49. [NASA ADS] [CrossRef] [Google Scholar]
- S. Gaudreault, G. Rainwater and M. Tokman, KIOPS: a fast adaptive Krylov subspace solver for exponential integrators. J. Comput. Phys. 372 (2018) 236–255. [CrossRef] [MathSciNet] [Google Scholar]
- M. Caliari, M. Vianello and L. Bergamaschi, Interpolating discrete advection–diffusion propagators at Leja sequences. J. Comput. Appl. Math. 172 (2004) 79–99. [CrossRef] [MathSciNet] [Google Scholar]
- M. Caliari, P. Kandolf, A. Ostermann and S. Rainer, Comparison of software for computing the action of the matrix exponential. BIT Numer. Math. 54 (2014) 113–128. [CrossRef] [Google Scholar]
- M. Caliari, P. Kandolf, A. Ostermann and S. Rainer, The Leja method revisited: backward error analysis for the matrix exponential. SIAM J. Sci. Comput. 38 (2016) A1639–A1661. [Google Scholar]
- C. Xu, W. Xu and K. Jing, Fast algorithms for singular value decomposition and the inverse of nearly low-rank matrices. Nat. Sci. Rev. 10 (2023) nwad083. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Y.-L. Zhao and X.-M. Gu, A low-rank algorithm for strongly damped wave equations with visco-elastic damping and mass terms. ESAIM m2an (2025). https://github.com/ylzhaofde/DLR-for-semilinear-wave-equations. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.