Open Access
Issue
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
Page(s) 1601 - 1625
DOI https://doi.org/10.1051/m2an/2025021
Published online 18 June 2025
  1. W. Alt, Nonlinear hyperbolic systems of generalized Navier–Stokes type for interactive motion in biology, in Geometric Analysis and Nonlinear Partial Differential Equations. Springer (2003) 431–461. [Google Scholar]
  2. J.-D. Benamou, G. Carlier, Q. Mérigot and E. Oudet, Discretization of functionals involving the Monge–Ampère operator. Numer. Math. 134 (2016) 611–636. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Bock, A.K. Tyagi, J.-U. Kreft and W. Alt, Generalized Voronoi tessellation as a model of two-dimensional cell tissue dynamics. Bull. Math. Biol. 72 (2010) 1696–1731. [MathSciNet] [Google Scholar]
  4. D.P. Bourne and S.M. Roper, Centroidal power diagrams, Lloyd’s algorithm and applications to optimal location problems. SIAM J. Numer. Anal. 53 (2015) 2545–2569. [Google Scholar]
  5. Y. Brenier, Derivation of the Euler equations from a caricature of coulomb interaction. Commun. Math. Phys. 212 (2000) 93–104. [CrossRef] [Google Scholar]
  6. G. Buttazzo and F. Santambrogio, A mass transportation model for the optimal planning of an urban region. SIAM Rev. 51 (2009) 593–610. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.A. Carrillo, Y. Huang, F.S. Patacchini and G. Wolansky, Numerical study of a particle method for gradient flows. Kinetic Related Models 10 (2017) 613–641. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.A. Carrillo, D. Matthes and M.-T. Wolfram, Lagrangian schemes for Wasserstein gradient flows. Handb. Numer. Anal. 22 (2021) 271–311. [Google Scholar]
  9. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th edition. Springer Berlin, Heidelberg (2016). [CrossRef] [Google Scholar]
  10. Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41 (1999) 637–676. [CrossRef] [Google Scholar]
  11. M. Elsey and D. Slepčev, Mean-curvature flow of Voronoi diagrams. J. Nonlinear Sci. 25 (2015) 59–85. [CrossRef] [MathSciNet] [Google Scholar]
  12. L.C. Evans, O. Savin and W. Gangbo, Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal. 37 (2005) 737–751. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.A. Fozard, H.M. Byrne, O.E. Jensen and J.R. King, Continuum approximations of individual-based models for epithelial monolayers. Math. Med. Biol. J. IMA 27 (2010) 39–74. [CrossRef] [PubMed] [Google Scholar]
  14. T.O. Gallouët and Q. Mérigot, A Lagrangian scheme à la Brenier for the incompressible Euler equations. Found. Comput. Math. 18 (2018) 835–865. [CrossRef] [MathSciNet] [Google Scholar]
  15. T.O. Gallouët, Q. Mérigot and A. Natale, Convergence of a Lagrangian discretization for barotropic fluids and porous media flow. SIAM J. Math. Anal. 54 (2022) 2990–3018. [Google Scholar]
  16. J. Giesselmann, C. Lattanzio and A.E. Tzavaras, Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics. Arch. Ration. Mech. Anal. 223 (2017) 1427–1484. [CrossRef] [MathSciNet] [Google Scholar]
  17. D.D. Holm, J.E. Marsden and T.S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137 (1998) 1–81. [CrossRef] [MathSciNet] [Google Scholar]
  18. H. Honda, Geometrical models for cells in tissues. Int. Rev. Cytol. 81 (1983) 191–248. [CrossRef] [Google Scholar]
  19. G.W. Jones and S.J. Chapman, Modeling growth in biological materials. SIAM Rev. 54 (2012) 52–118. [CrossRef] [MathSciNet] [Google Scholar]
  20. B. Khesin, G. Misio lek and K. Modin, Geometric hydrodynamics and infinite-dimensional Newton’s equations. Bull. Am. Math. Soc. 58 (2021) 377–442. [CrossRef] [Google Scholar]
  21. J. Kitagawa, Q. Mérigot and B. Thibert, Convergence of a Newton algorithm for semi-discrete optimal transport. J. Eur. Math. Soc. 21 (2019) 2603–2651. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Leclerc, Q. Mérigot, F. Santambrogio and F. Stra, Lagrangian discretization of crowd motion and linear diffusion. SIAM J. Numer. Anal. 58 (2020) 2093–2118. [CrossRef] [MathSciNet] [Google Scholar]
  23. Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu and C. Yang, On centroidal Voronoi tessellation-energy smoothness and fast computation. ACM Trans. Graphics (ToG) 28 (2009) 1–17. [Google Scholar]
  24. S. Lloyd, Least squares quantization in PCM. IEEE Trans. Inf. Theory 28 (1982) 129–137. [CrossRef] [Google Scholar]
  25. Q. Mérigot and J.-M. Mirebeau, Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport. SIAM J. Numer. Anal. 54 (2016) 3465–3492. [CrossRef] [MathSciNet] [Google Scholar]
  26. Q. Mérigot and B. Thibert, Optimal transport: discretization and algorithms, in Handbook of Numerical Analysis. Vol. 22. Elsevier (2021) 133–212. [CrossRef] [Google Scholar]
  27. Q. Mérigot, F. Santambrogio and C. Sarrazin, Non-asymptotic convergence bounds for Wasserstein approximation using point clouds. Adv. Neural Inf. Process. Syst. 34 (2021) 12810–12821. [Google Scholar]
  28. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Part. Differ. Equ. 26 (2001) 101–174. [CrossRef] [Google Scholar]
  29. C. Ruscher, J. Baschnagel and J. Farago, The Voronoi liquid. EPL (Europhys. Lett.) 112 (2016) 66003. [Google Scholar]
  30. G. Russo, Deterministic diffusion of particles. Commun. Pure Appl. Math. 43 (1990) 697–733. [CrossRef] [Google Scholar]
  31. C. Sarrazin, Lagrangian discretization of variational mean field games. SIAM J. Control Optim. 60 (2022) 1365–1392. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Votel, D.A.W. Barton, T. Gotou, T. Hatanaka, M. Fujita and J. Moehlis, Equilibrium configurations for a territorial model. SIAM J. Appl. Dyn. Syst. 8 (2009) 1234–1260. [CrossRef] [MathSciNet] [Google Scholar]
  33. The research data associated with this article is available from https://github.com/andnatale/gradient_flows_of_interacting_cells. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you