Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 4, July-August 2025
|
|
---|---|---|
Page(s) | 2253 - 2277 | |
DOI | https://doi.org/10.1051/m2an/2025053 | |
Published online | 31 July 2025 |
- J. Balbás and S. Karni, A central scheme for shallow water flows along channels with irregular geometry. M2AN Math. Model. Numer. Anal. 43 (2009) 333–351. [Google Scholar]
- D.S. Balsara, D. Bhoriya, C.-W. Shu and H. Kumar, Efficient alternative finite difference WENO scheme for hyperbolic systems with non-conservative products. Commun. Appl. Math. Comput. (2024). DOI: 10.1007/s42967-024-00374-1. [Google Scholar]
- D.S. Balsara, S. Garain and C.-W. Shu, An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326 (2016) 780–804. [Google Scholar]
- Y. Cao, A. Kurganov, Y. Liu and R. Xin, Flux globalization based well-balanced path-conservative central-upwind schemes for shallow water models. J. Sci. Comput. 92 (2022) 69. [Google Scholar]
- Y. Cao, A. Kurganov, Y. Liu and V. Zeitlin, Flux globalization based well-balanced path-conservative central-upwind scheme for two-layer thermal rotating shallow water equations. J. Comput. Phys. 474 (2023) 111790. [Google Scholar]
- V. Caselles, R. Donat and G. Haro, Flux-gradient and source-term balancing for certain high resolution shock-capturing schemes. Comput. Fluids 38 (2009) 16–36. [Google Scholar]
- M.J. Castro Díaz, A. Kurganov and T. Morales de Luna, Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ESAIM Math. Model. Numer. Anal. 53 (2019) 959–985. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- X. Chen, A. Kurganov and Y. Liu, Flux globalization based well-balanced central-upwind schemes for hydrodynamic equations with general free energy. J. Sci. Comput. 95 (2023) 95. [Google Scholar]
- Y. Chen, A. Kurganov and M. Na, A flux globalization based well-balanced path-conservative central-upwind scheme for the shallow water flows in channels. ESAIM Math. Model. Numer. Anal. 57 (2023) 1087–1110. [Google Scholar]
- Y. Cheng, A. Chertock, M. Herty, A. Kurganov and T. Wu, A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J. Sci. Comput. 80 (2019) 538–554. [CrossRef] [MathSciNet] [Google Scholar]
- A. Chertock, S. Cui, A. Kurganov, S¸.N. Ozcan and E. Tadmor, Well-balanced schemes for the Euler equations with gravitation: conservative formulation using global fluxes. J. Comput. Phys. 358 (2018) 36–52. [CrossRef] [MathSciNet] [Google Scholar]
- A. Chertock, M. Herty and c.N. Ozcan, Well-balanced central-upwind schemes for 2 × 2 systems of balance laws, in Theory, Numerics and Applications of Hyperbolic Problems I. Vol. 236 of Springer Proceedings in Mathematics & Statistics. Springer, Cham (2018) 345–361. [Google Scholar]
- A. Chertock, S. Chu and A. Kurganov, Hybrid multifluid algorithms based on the path-conservative central-upwind scheme. J. Sci. Comput. 89 (2021) 48. [Google Scholar]
- A. Chertock, A. Kurganov, X. Liu, Y. Liu and T. Wu, Well-balancing via flux globalization: applications to shallow water equations with wet/dry fronts. J. Sci. Comput. 90 (2022) 9. [Google Scholar]
- A. Chertock, S. Chu and A. Kurganov, Adaptive high-order A-WENO schemes based on a new local smoothness indicator. E. Asian. J. Appl. Math. 13 (2023) 576–609. [Google Scholar]
- S. Chu, A. Kurganov and M. Na, Fifth-order A-WENO schemes based on the path-conservative central-upwind method. J. Comput. Phys. 469 (2022) 111508. [Google Scholar]
- S. Chu, A. Kurganov, S. Mohammadian and Z. Zheng, Fifth-order A-WENO path-conservative central-upwind scheme for behavioral non-equilibrium traffic models. Commun. Comput. Phys. 33 (2023) 692–732. [Google Scholar]
- S. Chu, A. Kurganov, M. Na and R. Xin, Local characteristic decomposition of equilibrium variables for hyperbolic systems of balance laws. Preprint arXiv:2412.19791 (2024). [Google Scholar]
- S. Chu, A. Kurganov and R. Xin, A well-balanced fifth-order A-WENO scheme based on flux globalization. Beijing J. Pure Appl. Math. Preprint arXiv:2412.19901 (2024). [Google Scholar]
- S. Chu, A. Kurganov and R. Xin, New more efficient A-WENO scheme. J. Sci. Comput. 104 (2025) 53 [Google Scholar]
- M. Ciallella, D. Torlo and M. Ricchiuto, Arbitrary high order WENO finite volume scheme with flux globalization for moving equilibria preservation. J. Sci. Comput. 96 (2023) 53. [Google Scholar]
- A.J.C. de Saint-Venant, Thèorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l’introduction des marèes dans leur lit. C.R. Acad. Sci. Paris 73 (1871) 147–154, 237–240. [Google Scholar]
- W.S. Don, R. Li, B.-S. Wang and Y.H. Wang, A novel and robust scale-invariant WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 448 (2022) 110724. [Google Scholar]
- D. Donat and A. Martinez-Gavara, Hybrid second order schemes for scalar balance laws. J. Sci. Comput. 48 (2011) 52–69. [Google Scholar]
- C. Escalante, M.J. Castro and M. Semplice, Very high order well-balanced schemes for non-prismatic one-dimensional channels with arbitrary shape. Appl. Math. Comput. 398 (2021) 125993. [CrossRef] [Google Scholar]
- L. Gascón and J.M. Corderán, Construction of second-order TVD schemes for nonhomogeneous hyperbolic conservation laws. J. Comput. Phys. 172 (2001) 261–297. [Google Scholar]
- S. Gottlieb, C. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [Google Scholar]
- S. Gottlieb, D. Ketcheson and C. Shu, Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011). [Google Scholar]
- N. Gouta and F. Maurel, A finite volume solver for 1D shallow-water equations applied to an actual river. Int. J. Numer. Methods Fluids 38 (2002) 1–19. [Google Scholar]
- G. Hernández-Dueñas and S. Karni, Shallow water flows in channels. J. Sci. Comput. 48 (2011) 190–208. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Jiang, C.-W. Shu, and M. Zhang, An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35 (2013) A1137–A1160. [Google Scholar]
- A. Kurganov, Y. Liu and V. Zeitlin, A well-balanced central-upwind scheme for the thermal rotating shallow water equations. J. Comput. Phys. 411 (2020) 109414. [Google Scholar]
- A. Kurganov, Y. Liu and R. Xin, Well-balanced path-conservative central-upwind schemes based on flux globalization. J. Comput. Phys. 474 (2023) 111773. [CrossRef] [Google Scholar]
- P.G. LeFloch and M.D. Thanh, A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime. J. Comput. Phys. 230 (2011) 7631–7660. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Li, Nonstaggered central scheme with steady-state discretization for solving the open channel flows via the flux globalization. Appl. Numer. Math. 207 (2025) 58–85. [Google Scholar]
- Z. Li and D. Li, Nonstaggered central scheme under steady-state discretization for solving the Ripa model. J. Sci. Comput. 99 (2024) 78. [Google Scholar]
- P. Li, T.T. Li, W.S. Don and B.-S. Wang, Scale-invariant multi-resolution alternative WENO scheme for the Euler equations. J. Sci. Comput. 94 (2023) 15. [Google Scholar]
- H. Liu, A numerical study of the performance of alternative weighted ENO methods based on various numerical fuxes for conservation law. Appl. Math. Comput. 296 (2017) 182–197. [Google Scholar]
- X. Liu, A steady-state-preserving scheme for shallow water flows in channels. J. Comput. Phys. 423 (2020) 109803. [Google Scholar]
- R. Manning, On the flow of water in open channel and pipes. Trans. Inst. Civ. Eng. Ireland 20 (1891) 161–207. [Google Scholar]
- A. Martinez-Gavara and R. Donat, A hybrid second order scheme for shallow water flows. J. Sci. Comput. 48 (2011) 241–257. [Google Scholar]
- C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51 (2009) 82–126. [NASA ADS] [CrossRef] [Google Scholar]
- C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer. 29 (2020) 701–762. [Google Scholar]
- C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439–471. [Google Scholar]
- B. Sulistyono, L. Wiryanto and S. Mungkasi, A staggered method for simulating shallow water flows along channels with irregular geometry and friction. Int. J. Adv. Sci. Eng. Inf. Technol. 10 (2020) 952–958. [CrossRef] [Google Scholar]
- M.E. Váazquez-Cendóon, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148 (1999) 497–526. [CrossRef] [MathSciNet] [Google Scholar]
- B.-S. Wang and W.S. Don, Affine-invariant WENO weights and operator. Appl. Numer. Math. 181 (2022) 630–646. [Google Scholar]
- B.-S. Wang, P. Li, Z. Gao and W.S. Don, An improved fifth order alternative WENO-Z finite diference scheme for hyperbolic conservation laws. J. Comput. Phys. 374 (2018) 469–477. [Google Scholar]
- B.-S. Wang, W.S. Don, N.K. Garg and A. Kurganov, Fifth-order A-WENO finite-diference schemes based on a new adaptive diffusion central numerical flux. SIAM J. Sci. Comput. 42 (2020) A3932–A3956. [Google Scholar]
- B.-S. Wang, W.S. Don, A. Kurganov and Y. Liu, Fifth-order A-WENO schemes based on the adaptive diffusion central-upwind Rankine-Hugoniot fluxes. Commun. Appl. Math. Comput. 5 (2023) 295–314. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.