Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 4, July-August 2025
|
|
---|---|---|
Page(s) | 2279 - 2304 | |
DOI | https://doi.org/10.1051/m2an/2025059 | |
Published online | 31 July 2025 |
- H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I of Abstract Linear Theory. Birkh¨auser, Basel (1995). [Google Scholar]
- I.M. Babuška and S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42 (2000) 451–484. [Google Scholar]
- I. Babuška, F. Ihlenburg, E.T. Paik and S.A. Sauter, A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput. Methods Appl. Mech. Eng. 128 (1995) 325–359. [Google Scholar]
- K. Baker, L. Banjai and M. Ptashnyk, Numerical analysis of a time-stepping method for the Westervelt equation with time-fractional damping. Math. Comput. 93 (2024). [Google Scholar]
- R.T. Beyer, Parameter of nonlinearity in fluids. J. Acoust. Soc. Am. 32 (2005) 719–721. [Google Scholar]
- F.A. Duck, Nonlinear acoustics in diagnostic ultrasound. Ultrasound Med. Biol. 28 (2002) 1–18. [Google Scholar]
- B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves. Proc. Nat. Acad. Sci. 74 (1977) 1765–1766. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society (2010). [Google Scholar]
- X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces 𝑊𝑘,𝑝(𝑥)(Ω). J. Math. Anal. Appl. 262 (2001) 749–760. [Google Scholar]
- W.S. Gan, B/A Nonlinear Parameter Acoustical Imaging. Springer, Singapore (2021) 37–48. [Google Scholar]
- D. Givoli, High-order local non-reflecting boundary conditions: a review. Wave Motion 39 (2004) 319–326. [CrossRef] [MathSciNet] [Google Scholar]
- D. Gordon, R. Gordon and E. Turkel, Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions. J. Comput. Phys. 297 (2015) 295–315. [Google Scholar]
- B. Kaltenbacher, Periodic solutions and multiharmonic expansions for the Westervelt equation. Evol. Equ. Control Theory 10 (2021) 229–247. [Google Scholar]
- B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation. Discrete Contin. Dyn. Syst. S 2 (2009) 503. [Google Scholar]
- B. Kaltenbacher and W. Rundell, Nonlinearity parameter imaging in the frequency domain. Preprint arXiv:2303.09796 (2023). [Google Scholar]
- F. Lucka, M. Pérez-Liva, B.E. Treeby and B.T. Cox, High resolution 3D ultrasonic breast imaging by time-domain full waveform inversion. Inv. Prob. 38 (2021) 025008. [Google Scholar]
- J.M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49 (2011) 1210–1243. [Google Scholar]
- K. Mizohata and S. Ukai, The global existence of small amplitude solutions to the nonlinear acoustic wave equation. J. Math. Kyoto Univ. 33 (1993) 505–522. [Google Scholar]
- M. Muhr, V. Nikolić and B. Wohlmuth, Self-adaptive absorbing boundary conditions for quasilinear acoustic wave propagation. J. Comput. Phys. 388 (2019) 279–299. [Google Scholar]
- K.A. Naugol’nykh, L.A. Ostrovsky, E.A. Zabolotskaya and M.A. Breazeale, Nonlinear acoustics. J. Acoust. Soc. Am. 99 (1996) 1815–1815. [Google Scholar]
- V. Nikolić, Local existence results for the Westervelt equation with nonlinear damping and Neumann as well as absorbing boundary conditions. J. Math. Anal. Appl. 427 (2015) 1131–1167. [Google Scholar]
- V. Nikolić and B. Wohlmuth, A priori error estimates for the finite element approximation of Westervelt’s quasi-linear acoustic wave equation. SIAM J. Numer. Anal. 57 (2019) 1897–1918. [CrossRef] [MathSciNet] [Google Scholar]
- A.V. Oppenheim, Discrete-Time Signal Processing. Pearson Education India (1999). [Google Scholar]
- A. Panfilova, R. van Sloun, H. Wijkstra, O. Sapozhnikov and M. Mischi, A review on B/A measurement methods with a clinical perspective. J. Acoust. Soc. Am. 149 (2021) 2200. [Google Scholar]
- C. Pantea, C.F. Osterhoudt and D.N. Sinha, Determination of acoustical nonlinear parameter 𝛽 of water using the finite amplitude method. Ultrasonics 53 (2013) 1012–1019. [Google Scholar]
- B. Rainer, Iterative approximation scheme for the nonlinear periodic Westervelt equation implemented using conforming FEM with Lagrange elements of first order, https://github.com/dazedsheep/FEMHelmholtzSolver (accessed 2025-06-05). [Google Scholar]
- G. Schmidt, Linear differential equations with periodic coefficients. J. Appl. Math. Mech. 56 (1976) 222. [Google Scholar]
- I. Shevchenko and B. Wohlmuth, Self-adapting absorbing boundary conditions for the wave equation. Wave Motion 49 (2012) 461–473. [Google Scholar]
- M. Solovchuk, T.W. Sheu and M. Thiriet, Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects. J. Acoust. Soc. Am. 134 (2013) 3931–3942. [Google Scholar]
- E.A. Spence, A simple proof that the 𝑝-FEM does not suffer from the pollution effect for the constant-coefficient full-space Helmholtz equation. Adv. Comput. Math. 49 (2023). [Google Scholar]
- B. Sturtevant, C. Pantea and D. Sinha, Determination of the acoustic nonlinearity parameter in liquid water up to 250∘ C and 14 MPa, in 2012 IEEE International Ultrasonics Symposium, (2012) 285–288. DOI: 10.1109/ULTSYM.2012.0070. [Google Scholar]
- D. Werner, Functional Analysis. Springer, Heidelberg (2011). [Google Scholar]
- J. Wòjcik, Analytical solution of the nonlinear equations of acoustic in the form of Gaussian beam. Ultrasonics 122 (2022) 106687. [Google Scholar]
- D. Zhang, X. Fen Gong and X. Chen, Experimental imaging of the acoustic nonlinearity parameter B/A for biological tissues via a parametric array. Ultrasound Med. Biol. 27 (2001) 1359–1365. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.