Open Access
Issue
ESAIM: M2AN
Volume 59, Number 5, September-October 2025
Page(s) 2863 - 2893
DOI https://doi.org/10.1051/m2an/2025078
Published online 24 October 2025
  1. S. Gross and A. Reusken, Numerical simulation of continuum models for fluid–fluid interface dynamics. Eur. Phys. J.: Spec. Top. 222 (2013) 211–239. [Google Scholar]
  2. J. Shen and X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32 (2010) 1159–1179. [Google Scholar]
  3. J. Deteix, G.L.N. Kouamo and D. Yakoubi, A new energy stable fractional time stepping scheme for the Navier–Stokes/Allen–Cahn diffuse interface model. Comput. Methods Appl. Mech. Eng. 393 (2022) 114759. [CrossRef] [Google Scholar]
  4. A.J. Salgado, A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines. ESAIM: M2AN 47 (2013) 743–769. [Google Scholar]
  5. C. Liu, J. Shen and X. Yang, Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62 (2015) 601–622. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Acosta-Soba, F. Guillén-González, J.R. Rodríguez-Galván and J. Wang, Property-preserving numerical approximation of a Cahn–Hilliard–Navier–Stokes model with variable density and degenerate mobility. Appl. Numer. Math. 209 (2025) 68–83. [Google Scholar]
  7. M. Garcia-Villalba, T. Colonius, O. Desjardins, D. Lucas, A. Mani, D. Marchisio, O.K. Matar, F. Picano and S. Zaleski, Numerical methods for multiphase flows. Int. J. Multiph. Flow 191 (2025) 105285. [Google Scholar]
  8. C. Caia and P. Minev, A finite element method for an averaged multiphase flow model. Int. J. Comput. Fluid Dyn. 18 (2004) 111–123. [Google Scholar]
  9. A.Y. Varaksin, Fluid dynamics and thermal physics of two-phase flows: problems and achievements. High Temp. 51 (2013) 377–407. [Google Scholar]
  10. K.A. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik and D.L. Sadowski, Gas–liquid two-phase flow in microchannels Part I: two-phase flow patterns. Int. J. Multiph. Flow 25 (1999) 377–394. [Google Scholar]
  11. J.R. Percival, D. Pavlidis, Z. Xie, J.L.M. Gomes, M. Sakai, Y. Shigeto, H. Takahashi, O.K. Matar and C.C. Pain, Control volume finite element modelling of segregation of sand and granular flows in fluidized beds. Int. J. Multiph. Flow 67 (2014) 191–199. [Google Scholar]
  12. M. Rauter, The compressible granular collapse in a fluid as a continuum: validity of a Navier–Stokes model with μ(J), ø(J)-rheology. J. Fluid Mech. 915 (2021) A87. [Google Scholar]
  13. M. Rauter, S. Viroulet, S.S. Gylfadottir, W. Fellin and F. Løvholt, Granular porous landslide tsunami modelling – the 2014 Lake Askja flank collapse. Nat. Comm. 13 (2022) 678. [Google Scholar]
  14. C.T. Jacobs, G.S. Collins, M.D. Piggott, S.C. Kramer and C.R.G. Wilson, Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes. Geophys. J. Int. 192 (2013) 647–665. [Google Scholar]
  15. M.H. Kazeminezhad, A. Yeganeh-Bakhtiary, A. Etemad-Shahidi and J.H. Baas, Two-phase simulation of wave-induced tunnel scour beneath marine pipelines. J. Hydraul. Eng. 138 (2012) 517–529. [Google Scholar]
  16. Y. Zhang, X. Lu, X. Zhang and P. Li, Numerical simulation on flow characteristics of large-scale submarine mudflow. Appl. Ocean Res. 108 (2021) 102524. [Google Scholar]
  17. M.R. Baer and J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12 (1986) 861–889. [CrossRef] [Google Scholar]
  18. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet] [Google Scholar]
  19. H. Gravenkamp, R. Codina and J. Principe, A stabilized finite element method for modeling dispersed multiphase flows using orthogonal subgrid scales. J. Comput. Phys. 501 (2024) 112754. [Google Scholar]
  20. D.R.Q. Pacheco, A fully decoupled, iteration-free, unconditionally stable fractional-step scheme for dispersed multiphase flows. Comput. Methods Appl. Mech. Eng. 436 (2025) 117712. [Google Scholar]
  21. K. Hiltunen, A stabilized finite element method for particulate two-phase flow equations laminar isothermal flow. Comput. Methods Appl. Mech. Eng. 147 (1997) 387–399. [Google Scholar]
  22. A.W. Vreman, Stabilization of the Eulerian model for incompressible multiphase flow by artificial diffusion. J. Comput. Phys. 230 (2011) 1639–1651. [Google Scholar]
  23. T.S. Dang and G. Meschke, An ALE-PFEM method for the numerical simulation of two-phase mixture flow. Comput. Methods Appl. Mech. Eng. 278 (2014) 599–620. [Google Scholar]
  24. F. Behrangi, M.A. Banihashemi, M. Montazeri Namin and A. Bohluly, A new approach to solve mixture multi-phase flow model using time splitting projection method. Prog. Comput. Fluid Dyn. 19 (2019) 160–169. [Google Scholar]
  25. D. Ferrari and M. Dumbser, A semi-implicit finite volume scheme for incompressible two-phase flows. Comm. Appl. Math. Comput. 6 (2024) 2295–2330. [Google Scholar]
  26. E. Burman, D. Garg and J. Guzmán, Implicit-explicit time discretization for Oseen’s equation at high reynolds number with application to fractional step methods. SIAM J. Numer. Anal. 61 (2023) 2859–2886. [CrossRef] [MathSciNet] [Google Scholar]
  27. E. Burman, D. Garg and J. Guzmán, Implicit-explicit Crank–Nicolson scheme for Oseen’s equation at high Reynolds number. Math. Models Methods Appl. Sci. 34 (2024) 2709–2747. [Google Scholar]
  28. G.R. Barrenechea, E. Castillo and D.R.Q. Pacheco, Implicit-explicit schemes for incompressible flow problems with variable viscosity. SIAM J. Sci. Comput. 46 (2024) A2660–A2682. [Google Scholar]
  29. S. Boscarino, J.-M. Qiu, G. Russo and T. Xiong, A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system. J. Comput. Phys. 392 (2019) 594–618. [Google Scholar]
  30. J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195 (2006) 6011–6045. [Google Scholar]
  31. J.-L. Guermond and A. Salgado, A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228 (2009) 2834–2846. [Google Scholar]
  32. H. Rusche, Computational fluid dynamics of dispersed two-phase flows at high phase fractions. Ph.D. Thesis, Imperial College London (2003). [Google Scholar]
  33. L. Gesenhues and M. Behr, Simulating dense granular flow using the μ(I)-rheology within a space-time framework. Int. J. Numer. Methods Fluids 93 (2021) 2889–2904. [Google Scholar]
  34. J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167–188. [Google Scholar]
  35. J.G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. [CrossRef] [MathSciNet] [Google Scholar]
  36. D. Kuzmin and Y. Gorb, A flux-corrected transport algorithm for handling the close-packing limit in dense suspensions. J. Comput. Appl. Math. 236 (2012) 4944–4951. [Google Scholar]
  37. D. Kuzmin and H. Hajduk, Property-Preserving Numerical Schemes for Conservation Laws. World Scientific, Singapore (2023). [Google Scholar]
  38. G.R. Barrenechea, V. John and P. Knobloch, Monotone Discretizations for Elliptic Second Order Partial Differential Equations. Vol. 61. Springer Nature Switzerland (2025). [Google Scholar]
  39. S. Haßler, A.M. Ranno and M. Behr, Finite-element formulation for advection–reaction equations with change of variable and discontinuity capturing. Comput. Methods Appl. Mech. Eng. 369 (2020) 113171. [Google Scholar]
  40. T. Dzanic, W. Trojak and F.D. Witherden, Bounds preserving temporal integration methods for hyperbolic conservation laws. Comput. Math. Appl. 135 (2023) 6–18. [Google Scholar]
  41. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159. Springer New York (2004). [Google Scholar]
  42. A. Rudiawan, A. Žák, M. Beneš, M. Kimura and H. Notsu, An energy estimate and a stabilized Lagrange–Galerkin scheme for a multiphase flow model. Appl. Math. Lett. 153 (2024) 109059. [Google Scholar]
  43. J.L. Guermond, P. Minev and J. Shen, Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions. SIAM J. Numer. Anal. 43 (2005) 239–258. [Google Scholar]
  44. D.R.Q. Pacheco, Consistent splitting SAV schemes for finite element approximations of incompressible flows. Comput. Methods Appl. Mech. Eng. 446 (2025) 118240. [Google Scholar]
  45. S. Badia and R. Codina, Algebraic pressure segregation methods for the incompressible Navier–Stokes equations. Arch. Comput. Methods Eng. 15 (2007) 1–52. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you