Free Access
Issue
ESAIM: M2AN
Volume 45, Number 2, March-April 2011
Page(s) 235 - 254
DOI https://doi.org/10.1051/m2an/2010041
Published online 02 August 2010
  1. M. Astorino, J.-F. Gerbeau, O. Pantz and K.-F. Traoré, Fluid-structure interaction and multi-body contact: Application to aortic valves. Comput. Methods Appl. Mech. Eng. 198 (2009) 3603–3612. [Google Scholar]
  2. J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981) 315–328. [Google Scholar]
  3. D. Baraff, Analytical methods for dynamic simulation of non-penetrating rigid bodies, in SIGGRAPH '89: Proceedings of the 16th annual conference on computer graphics and interactive techniques, ACM Press, New York, USA (1989) 223–232. [Google Scholar]
  4. D. Baraff, Fast contact force computation for nonpenetrating rigid bodies, in SIGGRAPH '94: Proceedings of the 21st annual conference on computer graphics and interactive techniques, ACM Press, New York, USA (1994) 23–34. [Google Scholar]
  5. D. Baraff and A. Witkin, Dynamic simulation of non-penetrating flexible bodies, in SIGGRAPH '92: Proceedings of the 19th annual conference on computer graphics and interactive techniques, ACM Press, New York (1992) 303–308. [Google Scholar]
  6. D. Baraff and A. Witkin, Large steps in cloth simulation, in SIGGRAPH '98: Proceedings of the 25th annual conference on computer graphics and interactive techniques, ACM Press, New York (1998) 43–54. [Google Scholar]
  7. P.G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity. Arch. Rational Mech. Anal. 97 (1987) 171–188. [Google Scholar]
  8. M. Giaquinta, G. Modica and J. Souček, Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 106 (1989) 97–159. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Giaquinta, G. Modica and J. Souček, Erratum and addendum to: “Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity” [Arch. Rational Mech. Anal. 106 (1989) 97–159; MR 90c:58044]. Arch. Rational Mech. Anal. 109 (1990) 385–392. [Google Scholar]
  10. O. Gonzalez, J.H. Maddocks, F. Schuricht and H. von der Mosel, Global curvature and self-contact of nonlinearly elastic curves and rods. Calc. Var. Partial Differ. Equ. 14 (2002) 29–68. [Google Scholar]
  11. J.O. Hallquist, G.L. Goudreau and D.J. Benson, Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput. Methods Appl. Mech. Eng. 51 (1985) 107–137. [CrossRef] [Google Scholar]
  12. M. Heinstein, S. Attaway, J. Swegle and F. Mello, A general-purpose contact detection algorithm for nonlinear structural analysis code. Sandia Report SAND92-2141, Sandia National Laboratories, Alburquerque (1993). [Google Scholar]
  13. G. Hirota, S. Fisher and A. State, An improved finite-element contact model for anatomical simulations. Vis. Comput. 19 (2003) 291–309. [CrossRef] [Google Scholar]
  14. M. Jean, The non-smooth contact dynamics method. Computational modeling of contact and friction. Comput. Methods Appl. Mech. Eng. 177 (1999) 235–257. [Google Scholar]
  15. M. Jean, V. Acary and Y. Monerie, Non-smooth contact dynamics approach of cohesive materials. Non-smooth mechanics. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (2001) 2497–2518. [CrossRef] [MathSciNet] [Google Scholar]
  16. N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988). [Google Scholar]
  17. A. Klarbring, Large displacement frictional contact: a continuum framework for finite element discretization. Eur. J. Mech. A Solids 14 (1995) 237–253. [Google Scholar]
  18. T.A. Laursen, Formulation and treatment of frictional contact problems using finite elements. SUDAM Report 92 (1992). [Google Scholar]
  19. T.A. Laursen, Computational contact and impact mechanics, Fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer-Verlag, Berlin (2002). [Google Scholar]
  20. T.A. Laursen and J.C. Simo, A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int. J. Numer. Methods Eng. 36 (1993) 3451–3485. [Google Scholar]
  21. V.J. Milenkovic and H. Schmidl, Optimization-based animation, in SIGGRAPH '01: Proceedings of the 28th annual conference on computer graphics and interactive techniques, ACM Press, New York (2001) 37–46. [Google Scholar]
  22. B.S. Mordukhovich, Variational analysis and generalized differentiation. I Basic theory, Grundlehren der Mathematischen Wissenschaften 330. Springer-Verlag, Berlin (2006). [Google Scholar]
  23. B.S. Mordukhovich, Variational analysis and generalized differentiation. II Applications, Grundlehren der Mathematischen Wissenschaften 331. Springer-Verlag, Berlin (2006). [Google Scholar]
  24. J.J. Moreau, An introduction to unilateral dynamics. Lect. Notes Appl. Comput. Mech. 14 (2004) 1–26. [Google Scholar]
  25. O. Pantz, The modeling of deformable bodies with frictionless (self-)contacts. Rapport Interne 585, CMAP, École Polytechnique, Palaiseau (2005). [Google Scholar]
  26. O. Pantz, Contacts en dimension 2 : Une méthode de pénalisation. Rapport Interne 597, CMAP, École Polytechnique, Palaiseau (2006). [Google Scholar]
  27. O. Pantz, The modeling of deformable bodies with frictionless (self-)contacts. Arch. Rational Mech. Anal. 188 (2008) 183–212. [Google Scholar]
  28. M.A. Puso and T.A. Laursen, A 3D contact smoothing method using Gregory patches. Int. J. Numer. Methods Eng. 54 (2002) 1161–1194. [Google Scholar]
  29. F. Schuricht, A variational approach to obstacle problems for shearable nonlinearly elastic rods. Arch. Rational Mech. Anal. 140 (1997) 103–159. [CrossRef] [MathSciNet] [Google Scholar]
  30. F. Schuricht, Regularity for shearable nonlinearly elastic rods in obstacle problems. Arch. Rational Mech. Anal. 145 (1998) 23–49. [CrossRef] [MathSciNet] [Google Scholar]
  31. F. Schuricht, Variational approach to contact problems in nonlinear elasticity. Calc. Var. Partial Differ. Equ. 15 (2002) 433–449. [CrossRef] [Google Scholar]
  32. F. Schuricht and H. von der Mosel, Euler-Lagrange equations for nonlinearly elastic rods with self-contact. Arch. Rational Mech. Anal. 168 (2003) 35–82. [CrossRef] [Google Scholar]
  33. Q. Tang, Almost-everywhere injectivity in nonlinear elasticity. Proc. Roy. Soc. Edinburgh Sect. A 109 (1988) 79–95. [MathSciNet] [Google Scholar]
  34. P. Wriggers, Finite element algorithms for contact problems. Arch. Comput. Methods Eng. 2 (1995) 1–49. [Google Scholar]
  35. P. Wriggers, Computational Contact Mechanics. Springer, New York (2006). [Google Scholar]
  36. B. Yang, T.A. Laursen and X. Meng, Two dimensional mortar contact methods for large deformation frictional sliding. Int. J. Numer. Methods Eng. 62 (2005) 1183–1225. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you