Free Access
Issue
ESAIM: M2AN
Volume 45, Number 4, July-August 2011
Page(s) 675 - 696
DOI https://doi.org/10.1051/m2an/2010070
Published online 30 November 2010
  1. M. Ainsworth and S. Sherwin, Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations. Comput. Methods Appl. Mech. Eng. 175 (1999) 243–266. [CrossRef] [Google Scholar]
  2. A. Bendali and Y. Boubendir, Méthodes de décomposition de domaine et éléments finis nodaux pour la résolution de l'équation d'Helmholtz. C. R. Acad. Sci. Paris Sér. I 339 (2004) 229–234. [Google Scholar]
  3. A. Bendali and Y. Boubendir, Non-overlapping domain decomposition method for a nodal finite element method. Numer. Math. 103 (2006) 515–537. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Bercovier and M. Engelman, A finite element for the numerical solution of viscous incompressible flows. J. Comput. Phys. 30 (1979) 181–201. [CrossRef] [MathSciNet] [Google Scholar]
  5. Y. Boubendir, Techniques de décompositions de domaine et méthode d'équations intégrales. Ph.D. Thesis, INSA, Toulouse (2002). [Google Scholar]
  6. Y. Boubendir, An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem. J. Comput. Appl. Math. 204 (2007) 282– 291. [CrossRef] [MathSciNet] [Google Scholar]
  7. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer-Verlag, New York (2002). [Google Scholar]
  8. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). [Google Scholar]
  9. C. Calgaro and J. Laminie, On the domain decomposition method for the Stokes Problem with continuous pressure. Numer. Methods Partial Differ. Equ. 16 (2000) 84–106. [CrossRef] [Google Scholar]
  10. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
  11. T. Chacón Rebollo and E. Chacón Vera, A non-overlapping domain decomposition method for the Stokes equations via a penalty term on the interface. C. R. Acad. Sci. Paris Sér. I 334 (2002) 221–226. [Google Scholar]
  12. T. Chacón Rebollo and E. Chacón Vera, Study of a non-overlapping domain decomposition method: Poisson and Stokes problems. Appl. Numer. Math. 48 (2004) 169–194. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Collino, S. Ghanemi and P. Joly, Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Mech. Eng. 184 (2000) 171–211. [CrossRef] [Google Scholar]
  14. B. Després, Domain decomposition method and the Helmholtz problem, in Mathematical and Numerical Aspect of Wave Propagation Phenomena, SIAM, Philadelphia (1991) 44–52. [Google Scholar]
  15. M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy Coupling. SIAM J. Numer. Anal. 45 (2007) 1246–1268. [CrossRef] [MathSciNet] [Google Scholar]
  16. C. Ferhat and F.X. Roux, A method of finite element tearing and interconnecting and its parallel solution alghorithm. Int. J. Numer. Methods Eng. 32 (1991) 1205–1227. [Google Scholar]
  17. C. Ferhat, M. Lesoinne, P. Le Tallec, K. Pierson and D. Rixen, FETI-DP: a dual-primal unified FETI method-part I: A faster alternative to the two-level FETI method. Int. J. Numer. Meth. Engng. 50 (2001) 1523–1544. [Google Scholar]
  18. V. Girault and P.A. Raviart, Finite Element Methods For Navier-Stokes Equations. Springer-Verlag, Berlin-Heidelberg (1986). [Google Scholar]
  19. V. Girault, B. Rivière and M.F. Wheeler, A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74 (2004) 53–84. [Google Scholar]
  20. P. Gosselet and C. Rey, Non-overlapping domain decomposition methods in structural mechanics. Arch. Comput. Meth. Engng. 13 (2006) 515–572. [Google Scholar]
  21. D.Rh. Gwynllyw and T.N. Phillips, On the enforcement of the zero mean pressure condition in the spectral element approximation of the Stokes Problem. Comput. Methods Appl. Mech. Eng. 195 (2006) 1027–1049. [CrossRef] [Google Scholar]
  22. H.H. Kim and C. Lee, A Neumann-Dirichlet preconditioner for a FETI-DP formulation of the two dimensional Stokes problem with mortar methods. SIAM J. Sci. Comput. 28 (2006) 1133–1152. [Google Scholar]
  23. H.H. Kim, C. Lee and E.-H. Park, A FETI-DP formulation for the Stokes problem without primal pressure components. SIAM J. Numer. Anal. 47 (2010) 4142–4162. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Klawonn and L.F. Pavarino, Overlapping Schwarz methods for elasticity and Stokes problems. Comput. Methods Appl. Mech. Eng. 165 (1998) 233–245. [Google Scholar]
  25. P. Le Tallec and A. Patra, Non-overlapping domain decomposition methods for adaptive hp approximations for the Stokes problem with discontinuous pressure fields. Comput. Methods Appl. Mech. Eng. 145 (1997) 361–379. [Google Scholar]
  26. J. Li, A Dual-Primal FETI methods for incompressible Stokes equations. Numer. Math. 102 (2005) 257–275. [CrossRef] [MathSciNet] [Google Scholar]
  27. P.L. Lions, On the Schwarz alternating method III: A variant for non-overlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equation, SIAM, Philadelphia (1990) 202–223. [Google Scholar]
  28. G. Lube, L. Müller and F.C. Otto, A nonoverlapping domain decomposition method for stabilised finite element approximations of the Oseen equations. J. Comput. Appl. Math. 132 (2001) 211–236. [CrossRef] [MathSciNet] [Google Scholar]
  29. J. Mandel and R. Tezaur, On the convergence of a dual primal substructuring method. Numer. Math. 88 (2001) 543–558. [CrossRef] [MathSciNet] [Google Scholar]
  30. L.D. Marini and A. Quarteroni, Relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55 (1989) 575–589. [CrossRef] [MathSciNet] [Google Scholar]
  31. F.C. Otto and G. Lube, A nonoverlapping domain decomposition method for the Oseen equations. Math. Models Methods Appl. Sci. 8 (1998) 1091–1117. [CrossRef] [MathSciNet] [Google Scholar]
  32. F.C. Otto, G. Lube and L. Müller, An iterative substructuring method for div-stable finite element approximation of the Oseen problem. Computing 67 (2001) 91–117. [CrossRef] [MathSciNet] [Google Scholar]
  33. L.F. Pavarino and O.B. Widlund, Balancing Neumann-Neumann methods for incompressible Stokes equations. Commun. Pure Appl. Math. 55 (2002) 302–335. [CrossRef] [Google Scholar]
  34. A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations. Oxford University Press Inc., New York (1999). [Google Scholar]
  35. E.M. Rønquist, Domain decomposition methods for the steady Navier-Stokes equations, in 11th International Conference on Domain Decomposition Methods (London, 1998), DDM.org, Augsburg (1999) 330–340. [Google Scholar]
  36. Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996). [Google Scholar]
  37. B. Vereecke, H. Bavestrello and D. Dureisseix, An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems. Comput. Methods Appl. Mech. Eng. 192 (2003) 3409–3429. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you