Free Access
Issue
ESAIM: M2AN
Volume 45, Number 4, July-August 2011
Page(s) 651 - 674
DOI https://doi.org/10.1051/m2an/2010069
Published online 30 November 2010
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces. Academic Press (2003). [Google Scholar]
  2. J.H. Bramble and J.T. King, A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries. Math. Comp. 63 (1994) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Brezzi, G. Manzini, L.D. Marini, P. Pietra and A. Russo, Discontinuous galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16 (2000) 365–378. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Brezzi, T.J.R. Hughes, L.D. Marini and A. Masud, Mixed discontinuous Galerkin methods for Darcy flow. J. Sci. Comput. 22 (2005) 119–145. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput. Methods Appl. Mech. Eng. 199 (2010) 2680–2686. [CrossRef] [MathSciNet] [Google Scholar]
  7. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland (1978). [Google Scholar]
  8. R. Codina and J. Baiges, Approximate imposition of boundary conditions in immersed boundary methods. Int. J. Numer. Methods Eng. 80 (2009) 1379–1405. [CrossRef] [Google Scholar]
  9. A. Ern and J.L. Guermond, Theory and practice of finite elements. Springer-Verlag (2004). [Google Scholar]
  10. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC (1992). [Google Scholar]
  11. V. Girault and R. Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem. Japan J. Indust. Appl. Math. 12 (1995) 487–514. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Glowinski, T.W. Pan and J. Periaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111 (1994) 283–303. [Google Scholar]
  13. A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5537–5552. [Google Scholar]
  14. D. Henry, J. Hale and A.L. Pereira, Perturbation of the boundary in boundary-value problems of partial differential equations. Cambridge University Press, Cambridge (2005). [Google Scholar]
  15. M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562–580. [CrossRef] [MathSciNet] [Google Scholar]
  16. R.J. Leveque and Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31 (1994) 1019–1044. [CrossRef] [MathSciNet] [Google Scholar]
  17. A.J. Lew and G.C. Buscaglia, A discontinuous-Galerkin-based immersed boundary method. Int. J. Numer. Methods Eng. 76 (2008) 427–454. [CrossRef] [Google Scholar]
  18. A. Lew, P. Neff, D. Sulsky and M. Ortiz, Optimal BV estimates for a discontinuous Galerkin method in linear elasticity. Appl. Math. Res. Express 3 (2004) 73–106. [Google Scholar]
  19. J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Springer-Verlag (1972). [Google Scholar]
  20. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, in Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, Springer (1971) 9–15. [Google Scholar]
  21. R. Rangarajan, A. Lew and G.C. Buscaglia, A discontinuous-Galerkin-based immersed boundary method with non-homogeneous boundary conditions and its application to elasticity. Comput. Methods Appl. Mech. Eng. 198 (2009) 1513–1534. [CrossRef] [Google Scholar]
  22. V. Thomee, Polygonal domain approximation in Dirichlet's problem. J. Inst. Math. Appl. 11 (1973) 33–44. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you