Free Access
Volume 47, Number 5, September-October 2013
Page(s) 1265 - 1286
Published online 09 July 2013
  1. J. Abhau and M. Thalhammer, A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations. J. Comput. Phys. 231 (2012) 6665–6681. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. R.A. Adams, Sobolev Spaces. Academic Press, Orlando, Fla. (1975). [Google Scholar]
  3. W. Bao, D. Jaksch and P. Markowich, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. J. Comput. Phys. 187 (2003) 318–342. [CrossRef] [MathSciNet] [Google Scholar]
  4. W. Bao and J. Shen, A fourth-order time-splitting Laguerre–Hermite pseudospectral method for Bose–Einstein condensates. SIAM J. Sci. Comput. 26 (2005) 2010–2028. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Bardos, I. Catto, N. Mauser and S. Trabelsi, Global-in-time existence of solutions to the multiconfiguration time-dependent Hartree-Fock equations: A sufficient condition. Appl. Math. Lett. 22 (2009) 147–152. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Bardos, I. Catto, N. Mauser and S. Trabelsi, Setting and analysis of the multi-configuration time-dependent Hartree–Fock equations. Arch. Ration. Mech. Anal. 198 (2010) 273–330. [CrossRef] [MathSciNet] [Google Scholar]
  7. M.H. Beck, A. Jäckle, G.A. Worth, and H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets. Phys. Rep. 324 (2000) 1–105. [CrossRef] [Google Scholar]
  8. M.H. Beck and H.-D. Meyer, An efficient and robust integration scheme for the equations of the multiconfiguration time-dependent Hartree (MCTDH) method. Z. Phys. D 42 (1997) 113–129. [CrossRef] [Google Scholar]
  9. S. Blanes and P.C. Moan, Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comput. Appl. Math. 142 (2002) 313–330. [CrossRef] [MathSciNet] [Google Scholar]
  10. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer Verlag, New York, 2nd edition (2002). [Google Scholar]
  11. I. Burghardt, H.-D. Meyer and L.S. Cederbaum, Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method. J. Chem. Phys. 111 (1999) 2927–2939. [CrossRef] [Google Scholar]
  12. J. Caillat, J. Zanghellini, M. Kitzler, W. Kreuzer, O. Koch and A. Scrinzi, Correlated multielectron systems in strong laser pulses – an MCTDHF approach. Phys. Rev. A 71 (2005) 012712. [CrossRef] [Google Scholar]
  13. M. Caliari, Ch. Neuhauser and M. Thalhammer, High-order time-splitting Hermite and Fourier spectral methods for the Gross–Pitaevskii equation. J. Comput. Phys. 228 (2009) 822–832. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Descombes and M. Thalhammer, An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime. BIT Numer. Math. 50 (2010) 729–749. [Google Scholar]
  15. P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Proc. Cambridge Philos. Soc. 26 (1930) 376–385. [CrossRef] [Google Scholar]
  16. J. Frenkel, Wave Mechanics, Advanced General Theory. Clarendon Press, Oxford (1934). [Google Scholar]
  17. L. Gauckler, Convergence of a split-step Hermite method for the Gross–Pitaevskii equation. IMA J. Numer. Anal. 49 (2011) 1194–1209. [CrossRef] [Google Scholar]
  18. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Springer Verlag, Berlin–Heidelberg–New York (2002). [Google Scholar]
  19. E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Springer Verlag, Berlin–Heidelberg–New York (1987). [Google Scholar]
  20. G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities. Cambridge Univ. Press, Cambridge (1934). [Google Scholar]
  21. T. Kato, Perturbation Theory for Linear Operators. Springer Verlag, Berlin–Heidelberg–New York (1966). [Google Scholar]
  22. T. Kato and H. Kono, time-dependent multiconfiguration theory for electronic dynamics of molecules in an intense laser field. Chem. Phys. Lett. 392 (2004) 533–540. [CrossRef] [Google Scholar]
  23. M. Kitzler, J. Zanghellini, Ch. Jungreuthmayer, M. Smits, A. Scrinzi and T. Brabec, Ionization dynamics of extended multielectron systems. Phys. Rev. A 70 (2004) 041401(R). [CrossRef] [Google Scholar]
  24. O. Koch, The variational splitting method for the multi-configuration time-dependent Hartree–Fock equations for atoms. To appear in J. Numer. Anal. Indust. Appl. Math. 7 (2012) 1–13. [Google Scholar]
  25. O. Koch, W. Kreuzer and A. Scrinzi, MCTDHF in ultrafast laser dynamics. AURORA TR-2003-29, Inst. Appl. Math. Numer. Anal., Vienna Univ. of Technology, Austria (2003). Available at [Google Scholar]
  26. O. Koch, W. Kreuzer and A. Scrinzi, Approximation of the time-dependent electronic Schrödinger equation by MCTDHF. Appl. Math. Comput. 173 (2006) 960–976. [CrossRef] [MathSciNet] [Google Scholar]
  27. O. Koch and C. Lubich, Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics. M2AN Math. Model. Numer. Anal. 41 (2007) 315–331. [Google Scholar]
  28. O. Koch and C. Lubich, Analysis and time integration of the multi-configuration time-dependent Hartree–Fock equations in electron dynamics. ASC Report 4/2008, Inst. Anal. Sci. Comput. Vienna Univ. of Technology (2008). [Google Scholar]
  29. O. Koch and C. Lubich, Variational splitting time integration of the MCTDHF equations in electron dynamics. IMA J. Numer. Anal. 31 (2011) 379–395. [CrossRef] [MathSciNet] [Google Scholar]
  30. Y. Kwon, D.M. Ceperley and R.M. Martin, Effects of backflow correlation in the three-dimensional electron gas: Quantum Monte Carlo study. Phys. Rev. B 58 (1998) 6800–6806. [CrossRef] [Google Scholar]
  31. L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, Oxford–New York, 3rd edition (1977). [Google Scholar]
  32. C. Lubich, A variational splitting integrator for quantum molecular dynamics. Appl. Numer. Math. 48 (2004) 355–368. [CrossRef] [MathSciNet] [Google Scholar]
  33. C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. Zurich Lect. Adv. Math. Europ. Math. Soc., Zurich (2008). [Google Scholar]
  34. C. Lubich, On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77 (2008) 2141–2153. [CrossRef] [MathSciNet] [Google Scholar]
  35. R. McLachlan and R. Quispel, Splitting methods. Acta Numer. 11 (2002) 341–434. [CrossRef] [MathSciNet] [Google Scholar]
  36. H.-D. Meyer, F. Gatti and G.A. Worth, editors. Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley-VCH, Weinheim, Berlin (2009). [Google Scholar]
  37. H.-D. Meyer, U. Manthe and L.S. Cederbaum, The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165 (1990) 73–78. [CrossRef] [Google Scholar]
  38. H.-D. Meyer and G.A. Worth, Quantum molecular dynamics: Propagating wavepackets and density operators using the multi-configuration time-dependent Hartree (MCTDH) method. Theo. Chem. Acc. 109 (2003) 251–267. [CrossRef] [Google Scholar]
  39. M. Miklavčič, Applied Functional Analysis and Partial Differential Equations. World Scientific, Singapore (1998). [Google Scholar]
  40. I. Nagy, R. Diez Muiño, J.I. Juaristi and P.M. Echenique, Spin-resolved pair-distribution functions in an electron gas: A scattering approach based on consistent potentials. Phys. Rev. B 69 (2004) 233105. [CrossRef] [Google Scholar]
  41. M. Nest and T. Klamroth, Correlated many-electron dynamics: Application to inelastic electron scattering at a metal film. Phys. Rev. A 72 (2005) 012710. [CrossRef] [Google Scholar]
  42. M. Nest, T. Klamroth and P. Saalfrank, The multiconfiguration time-dependent Hartree–Fock method for quantum chemical calculations. J. Chem. Phys. 122 (2005) 124102. [CrossRef] [PubMed] [Google Scholar]
  43. C. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential. BIT Numer. Math. 49 (2009) 199–215. [CrossRef] [Google Scholar]
  44. V.M. Perez-Garcia and X. Liu, Numerical methods for the simulation of trapped nonlinear Schrödinger systems. Appl. Math. Comput. 144 (2003) 215–235. [CrossRef] [MathSciNet] [Google Scholar]
  45. J.C. Slater, Quantum Theory of Molecules and Solids. McGraw–Hill, New York, Toronto, London 1 (1960). [Google Scholar]
  46. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506–517. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  47. C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation. Appl. Math. Sci. Springer Verlag, New York (1999). [Google Scholar]
  48. M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 46 (2008) 2022–2038. [CrossRef] [MathSciNet] [Google Scholar]
  49. M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50 (2012) 3231–3258. [Google Scholar]
  50. S. Trabelsi, Solutions of the multiconfiguration time-dependent Hartree–Fock equations with Coulomb interactions. C. R. Acad. Sci. Paris, Ser. I 345 (2007) 145–150. [CrossRef] [Google Scholar]
  51. H.F. Trotter, On the product of semi-groups of operators. Proc. Amer. Math. Soc. 10 (1959) 545–551. [Google Scholar]
  52. J. Zanghellini, M. Kitzler, T. Brabec and A. Scrinzi, Testing the multi-configuration time-dependent Hartree–Fock method. J. Phys. B: At. Mol. Phys. 37 (2004) 763–773. [CrossRef] [Google Scholar]
  53. J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec and A. Scrinzi, An MCTDHF approach to multi-electron dynamics in laser fields. Laser Phy. 13 (2003) 1064–1068. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you