Free Access
Issue
ESAIM: M2AN
Volume 28, Number 6, 1994
Page(s) 725 - 744
DOI https://doi.org/10.1051/m2an/1994280607251
Published online 31 January 2017
  1. C. ATKINSON, C. R. CHAMPION, 1984, Some boundary-value problems for the equation ∇ (|∇φ|N ∇φ) = 0. Q. Jl Mech. Appl. Math., 37, 401-419. [MR: 760209] [Zbl: 0567.73054]
  2. J. W. BARRETT, W. B. LIU, 1993, Finite element approximation of the p-Laplacian, Math. Comp., 61. 523-537. [MR: 1192966] [Zbl: 0791.65084]
  3. J. W. BARRETT, W. B. LIU, 1993, Finite element error analysis of a quasi-Newtoman flow obeying the Carreau or power law, Numer. Math., 64, 433-453. [EuDML: 133714] [MR: 1213411] [Zbl: 0796.76049]
  4. L. W. BARRETT, W. B. LIU, 1994, Finite element approximation of the parabolic p-Laplacian, SIAM, J. Numer. Anal., 31, 413-428. [MR: 1276708] [Zbl: 0805.65097]
  5. H. J. CHOE, 1991, A regularity theory for a general class of quasilmear elliptic partial differential equations and obstacle problems, Arch. Rat. Mech. Anal., 114, 383-394. [MR: 1100802] [Zbl: 0733.35024]
  6. S. S. CHOW, 1989, Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math. 54, 373-393. [EuDML: 133324] [MR: 972416] [Zbl: 0643.65058]
  7. P.-G. CIARLET, 1978, The Finite Element Methodfor Elliptic Problems, North. Holland, Amsterdam. [MR: 520174] [Zbl: 0383.65058]
  8. P. CORTEY-DUMONT, 1985, On finite element approximation in the L∞-norm of variational inequalities, Numer. Math., 47, 45-57. [EuDML: 133022] [MR: 797877] [Zbl: 0574.65064]
  9. M. DOBROWOLSKI, R. RANNACHER, 1980, Finite element methods for nonlinear elliptic Systems of second order, Math. Nachr., 94, 155-172. [MR: 582526] [Zbl: 0444.65077]
  10. R. S. FALK, 1974, Error estimates for the approximation of a class of variational inequalities, Math. Comp., 28, 963-971. [MR: 391502] [Zbl: 0297.65061]
  11. J. FREHSE, R. RANNACHER, 1978, Asymptotic L∞-error estimates for linear finite element approximations of quasilinear boundary problems, SIAM, J. Numer. Anal., 15, 419 431. [MR: 502037] [Zbl: 0386.65049]
  12. R. GLOWINSKI, A. MARROCCO, 1975, Sur l'approximation par éléments finis d'ordre un, et la résolution, par pénalisation-dualite, d'une classe de problèmes de Dirichlet non linéaires, R.A.I.R.O. Analyse Numérique, 2, 41-64. [EuDML: 193269] [MR: 388811] [Zbl: 0368.65053]
  13. W. B. LIU, J. W. BARRETT, 1993, A remark on the regulanty of the solutions of the p-Laplacian and its applications to their finite element approximation, J. Math. Anal. Appl., 178, 470-487. [MR: 1238889] [Zbl: 0799.35085]
  14. W. B. LIU, J. W. BARRETT, 1993, A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation, Nonlinear Anal., 21, 379-387. [MR: 1237129] [Zbl: 0856.35017]
  15. W. B. Liu, J. W. BARRETT, 1993, Higher order regularity for the solutions of some quasilinear degenerate elliptic equations in the plane, SIAM, J. Math. Anal., 24, 1522-1536. [MR: 1241156] [Zbl: 0802.35013]
  16. W. B. LIU, J. W. BARRETT, Finite element approximation of some degenerate monotone quasilinear elliptic Systems, SIAM, J. Numer. Anal. (to appear). [MR: 1377245] [Zbl: 0846.65064]
  17. [17]H. D. MITTELMANN, 1978, On the approximate solution of nonlinear variation inequalities, Numer. Math., 29, 451-462. [EuDML: 132532] [MR: 658146] [Zbl: 0354.65054]
  18. R. H. NOCHETTO, 1989, Pointwise accuracy of a finite element method for nonlinear variational inequalities, Numer. Math., 54, 601-618. [EuDML: 133336] [MR: 981294] [Zbl: 0661.65065]
  19. J. R. PHILIP, 1961, N-diffusion, Aust. J. Phys., 14. 1-13. [MR: 140343] [Zbl: 0137.18402]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you