Free Access
Volume 30, Number 4, 1996
Page(s) 413 - 444
Published online 31 January 2017
  1. F. BOURQUIN and P. G. CIARLET, 1989, Modeling and Justification of Eigenvalue Problems for Jonctions between Elastic Structures, J. Funct. Anal., 87, pp. 392-427. [MR: 1026860] [Zbl: 0699.73010] [Google Scholar]
  2. P. G. CIARLET, 1990, Plates and Junctions in Elastic Multi Structures : An asymptotic Analysis, Masson, Paris and Springer-Verlag, Heidelberg. [MR: 1071376] [Zbl: 0706.73046] [Google Scholar]
  3. P. G. CIARLET and P. DESTUYNDER, 1979, A justification of the two-dimensional plate model, J. Mécanique, 18, pp. 315-344. [MR: 533827] [Zbl: 0415.73072] [Google Scholar]
  4. P. G. CIARLET and S. KESAVAN, 1981, Modélisation de la jonction entre un corps élastique tri-dimensionnel et une plaque, C. R.Acad. Sci. Paris, Série I 305,pp 55-58. [MR: 902275] [Zbl: 0632.73015] [Google Scholar]
  5. P. G. CIARLET and H. LE DRET, 1989, Justification of boundary conditions of a clamped plate by an asymptotic analysis, Asymptotic Analysis, 2, pp. 257-277. [MR: 1030351] [Zbl: 0699.73011] [Google Scholar]
  6. P. G. CIARLET, H. LE DRET and R. NZENGWA, 1987, Two dimensional approximations of three-dimensional eigenvalue problems in plate theory, Comp. Methods Appl. Mech. Engrg., 26, pp. 149-172. [MR: 626720] [Zbl: 0489.73057] [Google Scholar]
  7. P. G. CIARLET, H. LE DRET and R. NZENGWA, 1989, Junctions between three-dimensional and two-dimensional liearly elastic structures, J. Math. Pures Appl.,68, pp. 261-295. [MR: 1025905] [Zbl: 0661.73013] [Google Scholar]
  8. P. G. CIARLET and J. C. PAUMIER, 1986, A justification of the Marguerre von Karman equations, Comput, Mech, I, pp. 177-202. [Zbl: 0633.73069] [Google Scholar]
  9. R. COURANT and D. HILBERT, 1953, Methods of Mathematical Physics, Vol. 1, Interscience, New York. [MR: 65391] [Zbl: 0051.28802] [Google Scholar]
  10. P. DESTUYNDER, 1980, Sur une Justification des Modèles de Plaques et de Coques par les Méthodes Asymptotiques, Thèse d'état, Université Pierre et Marie Curie, Paris (1980). [Google Scholar]
  11. P. DESTUYNDER, 1986, Une Théorie Asymptotique des Plaques Minces en Élasticité Linéarisée, Masson, Paris. [MR: 830660] [Zbl: 0627.73064] [Google Scholar]
  12. G. DUVAUT and J. L. LIONS, 1972, Les Inéquations en Mécanique et en Physique, Dunod, Paris. [MR: 464857] [Zbl: 0298.73001] [Google Scholar]
  13. W. T. KOITER, 1970, On the foundation of the linear theory of thin elastic shells, Proc. Kon. Nederl. Akad Wetensch., B 73, pp. 169-195. [MR: 280050] [Zbl: 0213.27002] [Google Scholar]
  14. J. NECAS, 1967, Les méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris. [MR: 227584] [Google Scholar]
  15. A. RAOULT, 1990, Asymptotic modeling of the elastodynamics of a multi-structure, Asymptotic Analysis, 6, 73-108. [MR: 1188078] [Zbl: 0777.73033] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you