Free Access
Volume 30, Number 4, 1996
Page(s) 445 - 465
Published online 31 January 2017
  1. J. BARANGER, P. EMONOT, J.-F. MAITRE, 1992, High order lagrangian finite volume elements for elliptic boundary value problems, Numerical Methods in Engineering 92, Ch. Hirsch et al. ed., Elsevier Science Publishers, pp. 709-713. [Google Scholar]
  2. J. BARANGER, J.-F MAITRE, F. OUDIN, 1994, Application de la théorie des éléments finis mixtes à l'étude d'une classe de schémas aux volumes différences finis pour les problèmes elliptiques, C.R. Acad. Sci. Paris, 319, Série I, pp.401-404. [MR: 1289320] [Zbl: 0804.65102] [Google Scholar]
  3. F. BREZZI, M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, Springer-Verlag, New-York. [MR: 1115205] [Zbl: 0788.73002] [Google Scholar]
  4. P. G. CIARLET, P.A. RAVIART, 1972, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rat. Mech. Anal., 46, pp. 177-199. [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  5. I. FAILLE, 1992, A control volume method to solve an elliptic equation on a two-dimensional irregular mesh, Comput. Methods Appl. Mech. Engrg, 100, pp. 275-290. [MR: 1187634] [Zbl: 0761.76068] [Google Scholar]
  6. I. FAILLE, T. GALLOUET, R. HERBIN, 1991, Des mathématiciens découvrent les volumes finis, S.M.A.I., Matapli, Bulletin de liaison, 28. [Google Scholar]
  7. M. FARHLOUL, 1991, Méthodes d'éléments finis mixtes et volumes finis, Thèse, Université Laval, Québec. [Google Scholar]
  8. D. A. Jr. FORSYTH, P. H. SAMMON, 1988, Quadratic convergence for cell-centered grids, Applied Numerical Mathematics, 4, pp. 377-394. [MR: 948505] [Zbl: 0651.65086] [Google Scholar]
  9. W. HACKBUSCH, 1989, On first and second order box schemes, Computing, 41, pp. 277-296. [MR: 993825] [Zbl: 0649.65052] [Google Scholar]
  10. Y. HAUGAZEAU, P. LACOSTE, 1993, Condensation de la matrice de masse pour les éléments finis mixtes de H (rot), C.R. Acad. Sci. Paris, 316, Série I, pp. 509-512. [MR: 1209276] [Zbl: 0767.65076] [Google Scholar]
  11. R. HERBIN, An error estimate for a finite volume scheme for a diffusion convection problem on a triangular mesh, accepted for publication in Num. Meth. P.D.E. [MR: 1316144] [Zbl: 0822.65085] [Google Scholar]
  12. K. W. MORTON, E. SULI, 1991, Finite volume methods and their analysis, IMA Journal of Num. Anal., 11,pp. 241-260. [MR: 1105229] [Zbl: 0729.65087] [Google Scholar]
  13. J. C. NEDELEC, 1991, Notions sur les techniques d'éléments finis, Mathématiques et Applications, 7, Ellipses-Edition Marketing. [Zbl: 0847.65078] [Google Scholar]
  14. P. A. RAVIART, J. M. THOMAS, 1977, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Methods (I. Galligani, E. Magenes, eds), Lectures Notes in Math., 606, Springer-Verlag, New-York. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
  15. J. E. ROBERTS, J. M. THOMAS, 1989, Mixed and hybrid methods, in Handbook of Numerical Analysis, (P. G. Ciarlet and J. L. Lions, eds.), Vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam. [MR: 1115239] [Zbl: 0875.65090] [Google Scholar]
  16. A. WEISER,M. F. WEELER 1988, On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal., 25, pp.351-375. [MR: 933730] [Zbl: 0644.65062] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you