Free Access
Issue
ESAIM: M2AN
Volume 30, Number 4, 1996
Page(s) 467 - 488
DOI https://doi.org/10.1051/m2an/1996300404671
Published online 31 January 2017
  1. S. AGMON, A. DOUGLIS, L. NIRENBERG, 1964, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math., 17, pp. 35-92. [MR: 162050] [Zbl: 0123.28706] [Google Scholar]
  2. M. BERNADOU, P. G. CIARLET, 1976, Sur l'ellipticité du modèle de W. T. Koiter, in Computing Methods in Applied Sciences and Engineering (R. Glowinski & J. L. Lions, editors), pp. 89-136, Lecture Notes in Economics and Mathematical Systems, Vol. 134, Springer-Verlag. Heidelberg. [MR: 478954] [Zbl: 0356.73066] [Google Scholar]
  3. M. BERNADOU, P. G. CIARLET, B. MIARA, 1994, Existence theorems for two dimensional linear shell theories, J. Elasticity, 34, pp. 111-138. [MR: 1288854] [Zbl: 0808.73045] [Google Scholar]
  4. P. G. CIARLET, 1988, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity,North Holland, Amsterdam. [MR: 936420] [Zbl: 0648.73014] [Google Scholar]
  5. P. G. ClARLET, 1996, Mathematical Elasticity, Vol. II: Plates and Shells, North Holland, Amsterdam. [Zbl: 0888.73001] [Google Scholar]
  6. P. G. CIARLET, V. LODS, 1996, On the ellipticity of linear membrane shell equations,J. Math. Pures Appl., 75, pp. 107-124. [MR: 1380671] [Zbl: 0870.73037] [Google Scholar]
  7. P. G. CIARLET, V. LODS, 1994a, Analyse asymptotique des coques linéairement élastiques. I. Coques « membranaires », C. R. Acad. Sci. Paris, 318, Sérié I, pp. 863-868. [MR: 1273920] [Zbl: 0823.73041] [Google Scholar]
  8. P. G. CIARLET, V. LODS, 1994b, Analyse asymptotique des coques linéairement élastiques. III. Une justification du modèle de W. T. Koiter, C. R. Acad. Sci. Paris, 319, Série I, pp. 299-304. [MR: 1288422] [Zbl: 0837.73040] [Google Scholar]
  9. P. G. ClARLET, V. LODS, B. MlARA, 1994, Analyse asymptotique des coques linéairement élastiques. II Coques « en flexion », C. R. Acad. Sci. Paris, 319, Série I, pp. 95-100. [MR: 1285906] [Zbl: 0819.73043] [Google Scholar]
  10. P. G. CIARLET, B. MIARA, 1992, On the ellipticity of linear shell models, Z Angew. Math. Phys., 43, pp. 243-253. [MR: 1162726] [Zbl: 0765.73046] [Google Scholar]
  11. P. G. CIARLET, E. SANCHEZ-PALENCIA, 1996, An existence and uniqueness theorem for the two-dimensional linear membrane shell equations, J. Math. Pures Appl., 75, pp. 51-67. [MR: 1373545] [Zbl: 0856.73038] [Google Scholar]
  12. P. DESTUYNDER, 1980, Sur une Justification des Modèles de Plaques et de Coques par les Méthodes Asymptotiques, Doctoral Dissertation, Université Pierre et Marie Curie. [Google Scholar]
  13. P. DESTUYNDER, 1985, A classification of thin shell theories, Acta Applicandae Mathematicae, 4, pp. 15-63. [MR: 791261] [Zbl: 0531.73044] [Google Scholar]
  14. G. GEYMONAT, 1965, Sui problemi ai limiti per i sistemi lineari ellitici, Ann. Mat. Pura Appl., 69, pp. 207-284. [MR: 196262] [Zbl: 0152.11102] [Google Scholar]
  15. W. T. KOITER, 1970, On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch., B73, pp. 169-195. [Zbl: 0213.27002] [Google Scholar]
  16. J. L. LIONS, E. MAGENES, 1968, Problèmes aux Limites Non Homogènes et Applications, Vol. I, Dunod, Paris. [Zbl: 0165.10801] [Google Scholar]
  17. B. MIARA, 1994, Analyse asymptotique des coques membranaires non linéairement élastiques, C. R. Acad. Sci. Paris, 318, Série I, pp. 689-694. [MR: 1272328] [Zbl: 0799.73049] [Google Scholar]
  18. NECAS J., 1967, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris. [MR: 227584] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you