Free Access
Issue
ESAIM: M2AN
Volume 34, Number 6, November/December 2000
Page(s) 1259 - 1275
DOI https://doi.org/10.1051/m2an:2000126
Published online 15 April 2002
  1. P. Arminjon and M.-C. Viallon, Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace. C.R. Acad. Sci. Paris Sér. I 320 (1995) 85-88. [Google Scholar]
  2. P. Arminjon, M.-C. Viallon and A. Madrane, A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9 (1997) 1-22. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Bianco, G. Puppo and G. Russo, High order central schemes for hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 21 (1999) 294-322. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Einfeldt, On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25 (1988) 294-318. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. K.O. Friedrichs, Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7 (1954) 345-392. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Harten, The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. Comp. 32 (1978) 363-389. [MathSciNet] [Google Scholar]
  7. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357-393. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71 (1987) 231-303. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  9. G.-S. Jiang and E. Tadmor, Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Kurganov, Conservation laws: stability of numerical approximations and nonlinear regularization. Ph.D. thesis, Tel-Aviv University, Israel (1997). [Google Scholar]
  11. A. Kurganov and D. Levy, A third-order semi-discrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. (to appear). [Google Scholar]
  12. A. Kurganov and G. Petrova, A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math. (to appear). [Google Scholar]
  13. A. Kurganov, S. Noelle and G. Petrova, Semi-Discrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations. SIAM J. Sci. Comput. (submitted). [Google Scholar]
  14. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241-282. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  15. P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954) 159-193. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. van Leer, Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101-136. [NASA ADS] [CrossRef] [Google Scholar]
  17. D. Levy, G. Puppo and G. Russo, Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: M2AN 33 (1999) 547-571. [CrossRef] [EDP Sciences] [Google Scholar]
  18. D. Levy, G. Puppo and G. Russo, A third order central WENO scheme for 2D conservation laws. Appl. Numer. Math. 33 (2000) 407-414. [CrossRef] [MathSciNet] [Google Scholar]
  19. D. Levy, G. Puppo and G. Russo, Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22 (2000) 656-672. [CrossRef] [MathSciNet] [Google Scholar]
  20. K.-A. Lie and S. Noelle, Remarks on high-resolution non-oscillatory central schemes for multi-dimensional systems of conservation laws. Part I: An improved quadrature rule for the flux-computation. SIAM J. Sci. Comput. (submitted). [Google Scholar]
  21. X.-D. Liu and E. Tadmor, Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79 (1998) 397-425. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408-463. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Osher and E. Tadmor, On the convergence of difference approximations to scalar conservation laws. Math. Comp. 50 (1988) 19-51. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  24. R. Sanders and A. Weiser, A high order staggered grid method for hyperbolic systems of conservation laws in one space dimension. Comput. Methods Appl. Mech. Engrg. 75 (1989) 91-107. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Sanders and A. Weiser, High resolution staggered mesh approach for nonlinear hyperbolic systems of conservation laws. J. Comput. Phys. 101 (1992) 314-329. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Woodward and P. Colella, The numerical solution of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1988) 115-173. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you