Free Access
Issue
ESAIM: M2AN
Volume 34, Number 6, November/December 2000
Page(s) 1109 - 1122
DOI https://doi.org/10.1051/m2an:2000119
Published online 15 April 2002
  1. S. Akesbi, Accélération de la convergence par diffusion synthétique pour l'equation de transport. Thèse de l'université de Franche-Comté, n° 129 (1989). [Google Scholar]
  2. S. Akesbi, M.R. Laydi et M. Mokhtar-Kharroubi, Décomposition d'opérateurs et accélération de la convergence en neutronique. C.R. Acad. Sci. Paris Sér. I 319 (1994) 765-770. [Google Scholar]
  3. S. Akesbi, M. Nicolet, Accélération de la convergence par relaxation en théorie du transport. C.R. Acad. Sci. Paris Sér. I 321 (1995) 637-640. [Google Scholar]
  4. S. Akesbi et M. Nicolet, Nouveaux algorithmes performants en théorie du transport. ESAIM: M2AN 32 (1998) 341-358. [Google Scholar]
  5. S. Akesbi et M. Nicolet, Nouveaux algorithmes pour l'équation de transport en géométrie bidimensionnelle plane. C.R. Acad. Sci. Paris Sér. I 324 (1997) 699-706. [Google Scholar]
  6. R.E. Alcoofe, Diffusion synthetic acceleration method for the diamond-differenced discrete-ordinates equations. Nucl. Sci. and Eng. 64 (1977) 344-345. [Google Scholar]
  7. P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson (1982). [Google Scholar]
  8. R. Kress, Linear integral equations. Springer-Verlag (1989). [Google Scholar]
  9. E.W. Larsen, Unconditionally stable diffusion-synthetic acceleration methods for the slab geometry discrete-ordinates equations, Part I, Part II. Nucl. Sci. and Eng. 82 (1982) 47-63. [Google Scholar]
  10. I. Marek, Frobenius theory of positive operators, Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970). [Google Scholar]
  11. M. Mokhtar-Kharroubi, On the approximation of a class of transport equations. Transport Theory Statist. Phys. 22 (1993) 561-570. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Nelson, A Survey Convergence Results in Numerical Transport Theory, in: Com. Proceedings in honor of G.M. Wing's 65th birthday, Transport Theory, Invariant Imbedding, and Integral, P. Nelson et al. Eds. (1989). [Google Scholar]
  13. R. Sanchez et N.J. McCormick, A review of Neutron Transport Approximations. Nucl. Sci. and Eng. 80 (1982) 481-535. [Google Scholar]
  14. R.S. Varga, Matrix Iterative Analysis. Prentice-Hall, Engelwood Cliffs, N.J. (1962). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you