Free Access
Issue |
ESAIM: M2AN
Volume 34, Number 6, November/December 2000
|
|
---|---|---|
Page(s) | 1123 - 1149 | |
DOI | https://doi.org/10.1051/m2an:2000120 | |
Published online | 15 April 2002 |
- R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. [CrossRef] [MathSciNet] [Google Scholar]
- J. Baranger, J.F. Maitre and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. [Google Scholar]
- M.J. Berger and P. Collela, Local adaptative mesh refinement for shock hydrodynamics. J. Comput. Phys. 82 (1989) 64-84. [NASA ADS] [CrossRef] [Google Scholar]
- Z. Cai, On the finite volume element method. Numer. Math. 58 (1991) 713-735. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Cai and S. McCormick, On the accuracy of the finite volume element method for diffusion equations on composite grids. SIAM J. Numer. Anal. 27 (1990) 636-655. [CrossRef] [MathSciNet] [Google Scholar]
- W.J. Coirier, An Adaptatively-Refined, Cartesian, Cell-based Scheme for the Euler and Navier-Stokes Equations. Ph.D. thesis, Michigan Univ., NASA Lewis Research Center (1994). [Google Scholar]
- W.J. Coirier and K.G. Powell, A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA (1995). [Google Scholar]
- Y. Coudière, Analyse de schémas volumes finis sur maillages non structurés pour des problèmes linéaires hyperboliques et elliptiques. Ph.D. thesis, Université Paul Sabatier (1999). [Google Scholar]
- Y. Coudière, T. Gallouët and R. Herbin, Discrete sobolev inequalities and lp error estimates for approximate finite volume solutions of convection diffusion equation. Preprint of LATP, University of Marseille 1, 98-13 (1998). [Google Scholar]
- Y. Coudière, J.P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensionnal diffusion convection problem. ESAIM: M2AN 33 (1999) 493-516. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- B. Courbet and J.P. Croisille, Finite volume box schemes on triangular meshes. RAIRO Modél. Math. Anal. Numér. 32 (1998) 631-649. [MathSciNet] [Google Scholar]
- M. Dauge, Elliptic Boundary Value Problems in Corner Domains. Lect. Notes Math., Springer-Verlag, Berlin (1988). [Google Scholar]
- R.E. Ewing, R.D. Lazarov and P.S. Vassilevski, Local refinement techniques for elliptic problems on cell-centered grids. I. Error analysis. Math. Comp. 56 (1991) 437-461. [MathSciNet] [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds. (to appear). Prépublication No 97-19 du LATP, UMR 6632, Marseille (1997). [Google Scholar]
- P.A. Forsyth and P.H. Sammon, Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377-394. [CrossRef] [MathSciNet] [Google Scholar]
- B. Heinrich, Finite Difference Methods on Irregular Networks. Internat. Ser. Numer. Anal. 82, Birkhaüser, Verlag Basel (1987). [Google Scholar]
- R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differential Equations 11 (1994) 165-173. [Google Scholar]
- F. Jacon and D. Knight, A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA (1994). [Google Scholar]
- H. Jianguo and X. Shitong, On the finite volume element method for general self-adjoint elliptic problem. SIAM J. Numer. Anal. 35 (1998) 1762-1774. [CrossRef] [MathSciNet] [Google Scholar]
- P. Lesaint, Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis. Technical report, CEA (1976). [Google Scholar]
- T.A. Manteuffel and A.B. White, The numerical solution of second-order boundary values problems on nonuniform meshes. Math. Comp. 47 (1986) 511-535. [CrossRef] [MathSciNet] [Google Scholar]
- K. Mer, Variational analysis of a mixed finite element finite volume scheme on general triangulations. Technical Report 2213, INRIA, Sophia Antipolis (1994). [Google Scholar]
- I.D. Mishev, Finite volume methods on voronoï meshes. Numer. Methods Partial Differential Equations 14 (1998) 193-212. [CrossRef] [MathSciNet] [Google Scholar]
- K.W. Morton and E. Süli, Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241-260. [CrossRef] [MathSciNet] [Google Scholar]
- E. Süli, Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. [CrossRef] [MathSciNet] [Google Scholar]
- J.-M. Thomas and D. Trujillo. Analysis of finite volumes methods. Technical Report 95/19, CNRS, URA 1204 (1995). [Google Scholar]
- J.-M. Thomas and D. Trujillo, Convergence of finite volumes methods. Technical Report 95/20, CNRS, URA 1204 (1995). [Google Scholar]
- R. Vanselow and H.P. Scheffler, Convergence analysis of a finite volume method via a new nonconforming finite element method. Numer. Methods Partial Differential Equations 14 (1998) 213-231. [CrossRef] [MathSciNet] [Google Scholar]
- P.S. Vassilevski, S.I. Petrova and R.D. Lazarov. Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Stat. Comput. 13 (1992) 1287-1313. [CrossRef] [MathSciNet] [Google Scholar]
- A. Weiser and M.F. Wheeler, On convergence of block-centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25 (1988) 351-375. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.