Free Access
Issue
ESAIM: M2AN
Volume 38, Number 4, July-August 2004
Page(s) 673 - 690
DOI https://doi.org/10.1051/m2an:2004032
Published online 15 August 2004
  1. P. Berthonnaud, Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés. C. R. Acad. Sci. 331 (2000) 651–654. [Google Scholar]
  2. M. Brassart, Limite semi-classique de transformées de Wigner dans des milieux périodiques ou aléatoires. Thèse Université de Nice-Sophia Antipolis (Novembre 2002). [Google Scholar]
  3. J.R. Brock and G.M. Hidy, The dynamics of aerocolloidal systems. Pergamon Press (1970). [Google Scholar]
  4. R. Caflisch and G. Papanicolaou, Dynamic theory of suspensions with Brownian effects. SIAM J. Appl. Math. 43 (1983) 885–906. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.F. Clouet and K. Domelevo, Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow. Math. Models Methods Appl. Sci. 7 (1997) 239–263. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Desvillettes, About the modeling of complex flows by gas-particles methods, Proceedings of the workshop “Trends in Numerical and Physical Modeling for Industrial Multiphase Flows”, Cargèse, France (2000). [Google Scholar]
  7. K. Domelevo and M.-H. Vignal, Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels. C. R. Acad. Sci. 332 (2001) 863–868. [Google Scholar]
  8. K. Domelevo and P. Villedieu, Work in preparation. Personal communication. [Google Scholar]
  9. S. Gavrilyuck and V. Teshukhov, Kinetic model for the motion of compressible bubbles in a perfect fluid. Eur. J. Mech. B/Fluids 21 (2002) 469–491. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Golse, in From kinetic to macroscopic models in Kinetic equations and asymptotic theory, B. Perthame and L. Desvillettes Eds., Gauthier-Villars, Ser. Appl. Math. 4 (2000) 41–121. [Google Scholar]
  11. T. Goudon, Asymptotic problems for a kinetic model of two-phase flow. Proc. Royal Soc. Edimburgh 131 (2001) 1371–1384. [CrossRef] [Google Scholar]
  12. T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Light particles regime. Preprint. [Google Scholar]
  13. T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Fine particles regime. Preprint. [Google Scholar]
  14. K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Ind. Appl. Math. 15 (1998) 51–74. [CrossRef] [Google Scholar]
  15. H. Herrero, B. Lucquin-Desreux and B. Perthame, On the motion of dispersed balls in a potential flow: a kinetic description of the added mass effect. SIAM J. Appl. Math. 60 (1999) 61–83. [CrossRef] [Google Scholar]
  16. P.-E. Jabin, Large time concentrations for solutions to kinetic equations with energy dissipation. Comm. Partial Differential Equations 25 (2000) 541–557. [CrossRef] [MathSciNet] [Google Scholar]
  17. P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction. Ann. IHP Anal. Non Linéaire 17 (2000) 651–672. [CrossRef] [Google Scholar]
  18. P.-E. Jabin and B. Perthame, in Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo and M. Pulvirenti Eds., Birkhäuser (2000) 111–147. [Google Scholar]
  19. P. Kramer and A. Majda, Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena. Physics Reports 314 (1999) 237–574. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Kubo, Stochastic Liouville equations. J. Math. Phys. 4 (1963) 174–183. [NASA ADS] [CrossRef] [Google Scholar]
  21. G. Loeper and A. Vasseur, Electric turbulence in a plasma subject to a strong magnetic field. Preprint. [Google Scholar]
  22. P.J. O'Rourke, Statistical properties and numerical implementation of a model for droplets dispersion in a turbulent gas. J. Comp. Phys. 83 (1989) 345–360. [CrossRef] [Google Scholar]
  23. F. Poupaud and A. Vasseur, Classical and quantum transport in random media. J. Math. Pures Appl. 82 (2003) 711–748. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Russo and P. Smereka, Kinetic theory for bubbly flows I, II. SIAM J. Appl. Math. 56 (1996) 327–371. [CrossRef] [MathSciNet] [Google Scholar]
  25. C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid mechanics, S. Friedlander and D. Serre Eds., North-Holland (2002). [Google Scholar]
  26. F.A. Williams, Combustion theory. Benjamin Cummings Publ., 2nd edn. (1985). [Google Scholar]
  27. L.I. Zaichik, A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids 11 (1999) 1521–1534. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you