Free Access
Volume 38, Number 4, July-August 2004
Page(s) 673 - 690
Published online 15 August 2004
  1. P. Berthonnaud, Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés. C. R. Acad. Sci. 331 (2000) 651–654.
  2. M. Brassart, Limite semi-classique de transformées de Wigner dans des milieux périodiques ou aléatoires. Thèse Université de Nice-Sophia Antipolis (Novembre 2002).
  3. J.R. Brock and G.M. Hidy, The dynamics of aerocolloidal systems. Pergamon Press (1970).
  4. R. Caflisch and G. Papanicolaou, Dynamic theory of suspensions with Brownian effects. SIAM J. Appl. Math. 43 (1983) 885–906. [CrossRef] [MathSciNet]
  5. J.F. Clouet and K. Domelevo, Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow. Math. Models Methods Appl. Sci. 7 (1997) 239–263. [CrossRef] [MathSciNet]
  6. L. Desvillettes, About the modeling of complex flows by gas-particles methods, Proceedings of the workshop “Trends in Numerical and Physical Modeling for Industrial Multiphase Flows”, Cargèse, France (2000).
  7. K. Domelevo and M.-H. Vignal, Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels. C. R. Acad. Sci. 332 (2001) 863–868.
  8. K. Domelevo and P. Villedieu, Work in preparation. Personal communication.
  9. S. Gavrilyuck and V. Teshukhov, Kinetic model for the motion of compressible bubbles in a perfect fluid. Eur. J. Mech. B/Fluids 21 (2002) 469–491. [CrossRef] [MathSciNet]
  10. F. Golse, in From kinetic to macroscopic models in Kinetic equations and asymptotic theory, B. Perthame and L. Desvillettes Eds., Gauthier-Villars, Ser. Appl. Math. 4 (2000) 41–121.
  11. T. Goudon, Asymptotic problems for a kinetic model of two-phase flow. Proc. Royal Soc. Edimburgh 131 (2001) 1371–1384. [CrossRef]
  12. T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Light particles regime. Preprint.
  13. T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Fine particles regime. Preprint.
  14. K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Ind. Appl. Math. 15 (1998) 51–74. [CrossRef]
  15. H. Herrero, B. Lucquin-Desreux and B. Perthame, On the motion of dispersed balls in a potential flow: a kinetic description of the added mass effect. SIAM J. Appl. Math. 60 (1999) 61–83. [CrossRef]
  16. P.-E. Jabin, Large time concentrations for solutions to kinetic equations with energy dissipation. Comm. Partial Differential Equations 25 (2000) 541–557. [CrossRef] [MathSciNet]
  17. P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction. Ann. IHP Anal. Non Linéaire 17 (2000) 651–672. [CrossRef]
  18. P.-E. Jabin and B. Perthame, in Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo and M. Pulvirenti Eds., Birkhäuser (2000) 111–147.
  19. P. Kramer and A. Majda, Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena. Physics Reports 314 (1999) 237–574. [NASA ADS] [CrossRef] [MathSciNet]
  20. R. Kubo, Stochastic Liouville equations. J. Math. Phys. 4 (1963) 174–183. [NASA ADS] [CrossRef]
  21. G. Loeper and A. Vasseur, Electric turbulence in a plasma subject to a strong magnetic field. Preprint.
  22. P.J. O'Rourke, Statistical properties and numerical implementation of a model for droplets dispersion in a turbulent gas. J. Comp. Phys. 83 (1989) 345–360. [CrossRef]
  23. F. Poupaud and A. Vasseur, Classical and quantum transport in random media. J. Math. Pures Appl. 82 (2003) 711–748. [CrossRef] [MathSciNet]
  24. G. Russo and P. Smereka, Kinetic theory for bubbly flows I, II. SIAM J. Appl. Math. 56 (1996) 327–371. [CrossRef] [MathSciNet]
  25. C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid mechanics, S. Friedlander and D. Serre Eds., North-Holland (2002).
  26. F.A. Williams, Combustion theory. Benjamin Cummings Publ., 2nd edn. (1985).
  27. L.I. Zaichik, A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids 11 (1999) 1521–1534. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you