Free Access
Issue
ESAIM: M2AN
Volume 39, Number 4, July-August 2005
Page(s) 755 - 780
DOI https://doi.org/10.1051/m2an:2005033
Published online 15 August 2005
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York, London (1975). [Google Scholar]
  2. P. Bénilan, M.G. Crandall and P. Sacks, Some L1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions. Appl. Math. Optim. 17 (1988) 203–224. [CrossRef] [MathSciNet] [Google Scholar]
  3. A.E. Berger, H. Brezis and J.C.W Rogers, A numerical method for solving the problem ut - Δƒ(u) = 0. RAIRO Anal. Numer. 13 (1979) 297–312. [MathSciNet] [Google Scholar]
  4. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer (1994). [Google Scholar]
  5. H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal. 9 (1972) 63–74. [CrossRef] [MathSciNet] [Google Scholar]
  6. H. Brezis and W. Strauss, Semi-linear second-order elliptic equations in L1. J. Math. Soc. Japan 25 (1973) 565–590. [CrossRef] [MathSciNet] [Google Scholar]
  7. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978). [Google Scholar]
  8. P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Handbook of Numerical Analysis, 17–351, Elsevier Science Publishers B.V., Amsterdam (1991). [Google Scholar]
  9. P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2 (1973) 17–31. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.F. Ciavaldini, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal. 12 (1975) 464–487. [CrossRef] [MathSciNet] [Google Scholar]
  11. B. Cockburn and G. Gripenberg, Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differential Equations 151 (1999) 231–251. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.G. Crandall and T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265–293. [CrossRef] [MathSciNet] [Google Scholar]
  13. C.M. Elliott, Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61–71. [CrossRef] [MathSciNet] [Google Scholar]
  14. C.M. Elliott and J.R. Ockendon, Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston. Res. Notes Math. 59 (1982). [Google Scholar]
  15. A. Friedman, Variational Principles and Free-Boundary Problems. Wiley, New York (1982). [Google Scholar]
  16. H. Fujii, Some remarks on finite element analysis of time-dependent field problems, in Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press, Tokyo (1973) 91–106. [Google Scholar]
  17. H. Fujita, N. Saito and T. Suzuki, Operator Theory and Numerical Methods. North-Holland, Amsterdam (2001). [Google Scholar]
  18. B.H. Gilding and L.A. Peletier, On a class of similarity solutions of the porous media equation. J. Math. Anal. Appl. 55 (1976) 351–364. [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). [Google Scholar]
  20. W. Jäger and J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605–627. [MathSciNet] [Google Scholar]
  21. J. Kačur, A. Handlovicová and M. Kacurová, Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal. 30 1703-1722 (1993). [Google Scholar]
  22. T. Kato, Schrödinger operators with singular potentials. Israel J. Math. 13 (1972) 135–148. [CrossRef] [MathSciNet] [Google Scholar]
  23. M.N. Le Roux, Semi-discretization in time for a fast diffusion equation. J. Math. Anal. Appl. 137 (1989) 354–370. [CrossRef] [MathSciNet] [Google Scholar]
  24. M.N. Le Roux and P.E. Mainge, Numerical solution of a fast diffusion equation. Math. Comp. 68 (1999) 461–485. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Lesaint and J. Pousin, Error estimates for a nonlinear degenerate parabolic equation. Math. Comp. 59 (1992) 339–358. [CrossRef] [MathSciNet] [Google Scholar]
  26. E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 655–678. [MathSciNet] [Google Scholar]
  27. E. Magenes, C. Verdi and A. Visintin, Semigroup approach to the Stefan problem with non-linear flux. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 75 (1983) 24–33. [Google Scholar]
  28. E. Magenes, C. Verdi, and A. Visintin, Theoretical and numerical results on the two-phase Stefan problem. SIAM J. Numer. Anal. 26 (1989) 1425–1438. [CrossRef] [MathSciNet] [Google Scholar]
  29. I. Miyadera, Nonlinear Semigroups. Amer. Math. Soc. Colloq. Publ. (1992). [Google Scholar]
  30. R.H. Nochetto, Error estimates for two-phase Stefan problems in several space variables. I. Linear boundary conditions. Calcolo 22 (1985) 457–499. [CrossRef] [MathSciNet] [Google Scholar]
  31. P.H. Nochetto, and C. Verdi, Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25 (1988) 784–814. [CrossRef] [MathSciNet] [Google Scholar]
  32. L.A. Peletier, The porous media equation, in Applications of Nonlinear Analysis in the Physical Sciences (Bielefeld, 1979), Surveys Reference Works Math., 6, Pitman, Boston, Mass.-London (1981) 229–241. [Google Scholar]
  33. R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximation. Math. Comp. 38 (1982) 437–445. [CrossRef] [MathSciNet] [Google Scholar]
  34. M. Rose, Numerical methods for flows through porous media, I. Math. Comp. 40 (1983) 435–467. [CrossRef] [MathSciNet] [Google Scholar]
  35. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. R.E. White, An enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal. 19 (1982) 1129–1157. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you