Free Access
Issue
ESAIM: M2AN
Volume 42, Number 2, March-April 2008
Page(s) 243 - 262
DOI https://doi.org/10.1051/m2an:2008003
Published online 27 March 2008
  1. P. Alart, M. Barboteu, P. Le Tallec and M. Vidrascu, Méthode de Schwarz additive avec solveur grossier pour problèmes non symétriques. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 399–404. [Google Scholar]
  2. L. Baillet and T. Sassi, Simulations numériques de différentes méthodes d'éléments finis pour les problèmes contact avec frottement. C. R. Acad. Sci. Paris Sér. II B 331 (2003) 789–796. [Google Scholar]
  3. L. Baillet and T. Sassi, Mixed finite element method for the Signorini problem with friction. Numer. Methods Partial Differential Equations 22 (2006) 1489–1508. [Google Scholar]
  4. G. Bayada, J. Sabil and T. Sassi, Algorithme de Neumann-Dirichlet pour des problèmes de contact unilatéral: résultat de convergence. C. R. Math. Acad. Sci. Paris 335 (2002) 381–386. [CrossRef] [MathSciNet] [Google Scholar]
  5. A.B. Chandhary and K.J. Bathe, A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Comput. Struc. 24 (1986) 855–873. [Google Scholar]
  6. P.W. Christensen, A. Klarbring, J.S. Pang and N. Strömberg, Formulation and comparison of algorithms for frictional contact problems. Internat. J. Numer. Methods Engrg. 42 (1998) 145–173. [Google Scholar]
  7. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques 21. Dunod, Paris (1972). [Google Scholar]
  8. C. Eck and B. Wohlmuth, Convergence of a contact-Neumann iteration for the solution of two-body contact problems. Math. Models Methods Appl. Sci. 13 (2003) 1103–1118. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Farhat and F.X. Roux, Implicit parallel processing in structural mechanics. Computational Mechanics Advances 1 (1994) 1–124. [Google Scholar]
  10. R. Glowinski, J.-L. Lions and R. Trémolières, Numerical analysis of variational inequalities, Studies in Mathematics and its Applications 8. North-Holland Publishing Co., Amsterdam (1981). Translated from the French. [Google Scholar]
  11. J. Haslinger, Z. Dostál and R. Kučera, On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2261–2281. [CrossRef] [MathSciNet] [Google Scholar]
  12. N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988). [Google Scholar]
  13. R. Kornhuber and R. Krause, Adaptive multigrid methods for Signorini's problem in linear elasticity. Comput. Vis. Sci. 4 (2001) 9–20. [CrossRef] [MathSciNet] [Google Scholar]
  14. R.H. Krause, Monotone multigrid methods for Signorini's problem with friction. Ph.D. thesis, University of Berlin, Germany (2001). [Google Scholar]
  15. R.H. Krause and B.I. Wohlmuth, Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer. Math. 8 (2000) 177–206. [MathSciNet] [Google Scholar]
  16. R.H. Krause and B.I. Wohlmuth, A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci. 5 (2002) 139–148. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Le Tallec, Domain decomposition methods in computational mechanics. Comput. Mech. Adv. 1 (1994) 121–220. [Google Scholar]
  18. L. Lusternik and V. Sobolev, Précis d'analyse fonctionnelle. MIR, Moscow (1989). [Google Scholar]
  19. B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain decomposition, Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996). [Google Scholar]
  20. G. Zavarise and P. Wriggers, A superlinear convergent augmented Lagrangian procedure for contact problems. Engrg. Comput. 16 (1999) 88–119. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you