Free Access
Issue
ESAIM: M2AN
Volume 43, Number 2, March-April 2009
Page(s) 277 - 295
DOI https://doi.org/10.1051/m2an:2008046
Published online 05 December 2008
  1. P.B. Bochev and J.M. Hyman, Principles of mimetic discretizations of differential operators, IMA Hot Topics Workshop on Compatible Spatial Discretizations 142, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., Springer-Verlag (2006). [Google Scholar]
  2. S. Brenner and L. Scott, The mathematical theory of finite element methods. Springer-Verlag, Berlin/Heidelberg (1994). [Google Scholar]
  3. F. Brezzi and A. Buffa, General framework for cochain approximations of differential forms. Technical report, Instituto di Mathematica Applicata a Technologie Informatiche (in preparation). [Google Scholar]
  4. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Mod. Meth. Appl. Sci. 15 (2005) 1533–1552. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Mod. Meth. Appl. Sci. 16 (2006) 275–297. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3692–3692. [Google Scholar]
  8. J. Campbell and M. Shashkov, A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172 (2001) 739–765. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, New York (1978). [Google Scholar]
  10. M. Dauge, Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions. Springer-Verlag, Berlin, New York (1988). [Google Scholar]
  11. P. Dvorak, New element lops time off CFD simulations. Mashine Design 78 (2006) 154–155. [Google Scholar]
  12. S.L. Lyons, R.R. Parashkevov and X.H. Wu, A family of H1-conforming finite element spaces for calculations on 3D grids with pinch-outs. Numer. Linear Algebra Appl. 13 (2006) 789–799. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Margolin, M. Shashkov and P. Smolarkiewicz, A discrete operator calculus for finite difference approximations. Comput. Meth. Appl. Mech. Engrg. 187 (2000) 365–383. [CrossRef] [MathSciNet] [Google Scholar]
  14. P.A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, I. Galligani and E. Magenes Eds., Springer-Verlag, Berlin-Heilderberg-New York (1977) 292–315. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you