Free Access
Issue
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
Page(s) 183 - 211
DOI https://doi.org/10.1051/m2an/2012025
Published online 31 August 2012
  1. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [MathSciNet]
  2. A.H. Barnett and T. Betcke, An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons. SIAM J. Sci. Comput. 32 (2010) 1417–1441. [CrossRef]
  3. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd edition. Springer (2008).
  4. A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM : M2AN 42 (2008) 925–940. [CrossRef] [EDP Sciences] [MathSciNet]
  5. O. Cessenat, Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques. Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. thesis, Université Paris IX Dauphine (1996).
  6. O. Cessenat and B. Després, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255–299. [CrossRef] [MathSciNet]
  7. P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Mod. Methods Appl. Sci. 16 (2006) 139–160. [CrossRef] [MathSciNet]
  8. A. El Kacimi and O. Laghrouche, Numerical modeling of elastic wave scattering in frequency domain by partition of unity finite element method. Int. J. Numer. Methods Eng. 77 (2009) 1646–1669. [CrossRef]
  9. C. Farhat, I. Harari and L.P. Franca, A discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6455–6479. [CrossRef]
  10. C. Farhat, I. Harari and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 1389–1429. [CrossRef]
  11. G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225 (2007) 1961–1984. [CrossRef] [MathSciNet]
  12. R. Hardin, N. Sloane and W. Smith, Spherical coverings. Available on http://www.research.att.com/˜njas/coverings/index.html (1994).
  13. R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation : analysis of the p-version. SIAM J. Numer. Anal. 49 (2011) 264–284. [CrossRef] [MathSciNet]
  14. R. Hiptmair, A. Moiola and I. Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. In press.
  15. T. Huttunen, P. Monk and J.P. Kaipio, Computational aspects of the ultra-weak variational formulation. J. Comput. Phys. 182 (2002) 27–46. [CrossRef] [MathSciNet]
  16. T. Huttunen, P. Monk, F. Collino and J.P. Kaipio, The ultra weak variational formulation for elastic wave problems. SIAM J. Sci. Comput. 25 (2004) 1717–1742. [CrossRef] [MathSciNet]
  17. T. Huttunen, P. Monk and J.P. Kaipio, The perfectly matched layer for the ultra weak variational formulation of the 3D Helmholtz equation. Int. J. Numer. Methods Eng. 61 (2004) 1072–1092. [CrossRef]
  18. T. Huttunen, M. Malinen and P. Monk, Solving Maxwell’s equations using the ultra weak variational formulation. J. Comput. Phys. 223 (2007) 731–758. [CrossRef] [MathSciNet]
  19. T. Huttunen, J.P. Kaipio and P. Monk,An ultra-weak method for acoustic fluid-solid interaction. J. Comput. Appl. Math. 213 (2008) 1667–1685. [CrossRef]
  20. V.D. Kupradze, Potential methods in the theory of elasticity. Israel Program for Scientific Translations (1965).
  21. T. Luostari, T. Huttunen and P. Monk, The ultra weak variational formulation for 3D elastic wave problems, in Proc. 20th International Congress on Acoustics, ICA (2010).Available in 2010 on http://www.acoustics.asn.au.
  22. P. Massimi, R. Tezaur and C. Farhat, A discontinuous enrichment method for three-dimensional multiscale harmonic wave propagation problems in multi-fluid and fluid-solid media. Int. J. Numer. Methods Eng. 76 (2008) 400–425. [CrossRef]
  23. M.M. Melenk and I. Babuška, The partition of unity finite element method : basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1996) 289–314. [CrossRef] [MathSciNet]
  24. A. Moiola, Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems. Ph.D. thesis, ETH Zürich (2011).
  25. A. Moiola, Plane wave approximation in linear elasticity. To appear in Appl. Anal.
  26. A. Moiola, R. Hiptmair and I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 65 (2011) 809–837. [CrossRef] [MathSciNet]
  27. P. Monk and D.-Q. Wang, A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121–136. [CrossRef] [MathSciNet]
  28. Y.-H. Pao, Betti’s identity and transition matrix for elastic waves. J. Acoust. Soc. Am. 64 (1978) 302–310. [CrossRef]
  29. E. Perrey-Debain, Plane wave decomposition in the unit disc : convergence estimates and computational aspects. J. Comput. Appl. Math. 193 (2006) 140–156. [CrossRef]
  30. I. Sloan and R. Womersley, Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21 (2004) 107–125. [CrossRef] [MathSciNet]
  31. D. Wang, J. Toivanen, R. Tezaur and C. Farhat,Overview of the discontinuous enrichment method, the ultra-weak variational formulation, and the partition of unity method for acoustic scattering in the medium frequency regime and performance comparisons. Int. J. Numer. Methods Eng. 89 (2012) 403–417. [CrossRef]
  32. R. Womersley and I. Sloan, Interpolation and cubature on the sphere. Available on http://web.maths.unsw.edu.au/˜rsw/Sphere.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you