Free Access
Issue |
ESAIM: M2AN
Volume 47, Number 5, September-October 2013
|
|
---|---|---|
Page(s) | 1315 - 1333 | |
DOI | https://doi.org/10.1051/m2an/2013070 | |
Published online | 09 July 2013 |
- D.N. Arnold, F. Brezzi, B. Cockburn and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001/02) 1749–1779. [Google Scholar]
- D.N. Arnold, Franco Brezzi, R. Falk and L. Donatella Marini, Locking–free Reissner-Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3660–3671. [CrossRef] [MathSciNet] [Google Scholar]
- D.N. Arnold, F. Brezzi and L. Donatella Marini, A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate. J. Sci. Comput. 22-23 (2005) 25–45. [CrossRef] [Google Scholar]
- B. Ayuso de Dios and L. Zikatanov, Uniformly convergent iterative methods for discontinuous Galerkin discretizations. J. Sci. Comput. 40 (2009) 4–36. [CrossRef] [MathSciNet] [Google Scholar]
- R. Blaheta, S. Margenov and M. Neytcheva, Aggregation-based multilevel preconditioning of non-conforming fem elasticity problems. Applied Parallel Computing. State of the Art in Scientific Computing, edited by J. Dongarra, K. Madsen and J. Wasniewski. In Lect. Notes Comput. Sci., vol. 3732. Springer Berlin/Heidelberg (2006) 847–856. [Google Scholar]
- F. Brezzi, B. Cockburn, L.D. Marini and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3293–3310. [CrossRef] [MathSciNet] [Google Scholar]
- E. Burman and B. Stamm, Low order discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2008) 508–533. [CrossRef] [MathSciNet] [Google Scholar]
- G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. Springer-Verlag, Berlin, Translated from the French by C.W. John, Grundlehren der Mathematischen Wissenschaften 219 (1976). [Google Scholar]
- R.S. Falk, Nonconforming finite element methods for the equations of linear elasticity. Math. Comput. 57 (1991) 529–550. [CrossRef] [MathSciNet] [Google Scholar]
- I. Georgiev, J.K. Kraus and S. Margenov, Multilevel preconditioning of Crouzeix-Raviart 3D pure displacement elasticity problems. Large Scale Scientific Computing, edited by I. Lirkov, S. Margenov and J. Wasniewski. In Lect. Notes Comput. Science, vol. 5910. Springer, Berlin, Heidelberg (2010) 103–110. [Google Scholar]
- P. Hansbo and M.G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 1895–1908. [CrossRef] [MathSciNet] [Google Scholar]
- P. Hansbo and M.G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity. ESAIM: M2AN 37 (2003) 63–72. [CrossRef] [EDP Sciences] [Google Scholar]
- M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49 409–436 (1953), 1952. [Google Scholar]
- J. Kraus and S. Margenov, Robust algebraic multilevel methods and algorithms. Walter de Gruyter GmbH and Co. KG, Berlin. Radon Ser. Comput. Appl. Math. 5 (2009). [Google Scholar]
- Y. Saad, Iterative methods for sparse linear systems. Society Industrial Appl. Math. Philadelphia, PA, 2nd (2003). [Google Scholar]
- T.P. Wihler, Locking-free DGFEM for elasticity problems in polygons. IMA J. Numer. Anal. 24 (2004) 45–75. [CrossRef] [MathSciNet] [Google Scholar]
- T.P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75 (2006) 1087–1102. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.