Open Access
Volume 53, Number 6, November-December 2019
Page(s) 1871 - 1891
Published online 18 October 2019
  1. L. Anders, M. Kent-Andre and G.N. Wells, Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin, Heidelberg (2012). [Google Scholar]
  2. T. Apel, Anisotropic finite elements: Local estimates and applications. Advances in Numerical, edited by B.G. Teubner, Stuttgart (1999). [Google Scholar]
  3. I. Babuška and A.K. Aziz, On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976) 214–226. [Google Scholar]
  4. R.E. Barnhill and J.A. Gregory, Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1975/76) 215–229. [Google Scholar]
  5. J. Brandts, S. Korotov, M. Křížek, On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008) 2227–2233. [Google Scholar]
  6. J. Brandts, S. Korotov and M. Křížek, Generalization of the Zlámal condition for simplicial finite elements in Rd. Appl. Math. 56 (2011) 417–424. [Google Scholar]
  7. S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. In Vol. 15. Springer Science & Business Media, Berlin (2007). [Google Scholar]
  8. M. Bucki, C. Lobos and Y. Payan, A fast and robust patient specific finite element mesh registration technique: application to 60 clinical cases. Med. Image Anal. 14 (2010) 303–317. [CrossRef] [PubMed] [Google Scholar]
  9. E. Burman, Ghost penalty. C. R. Math. Acad. Sci. Paris 348 (2010) 1217–1220. [CrossRef] [MathSciNet] [Google Scholar]
  10. E. Burman, S. Claus, P. Hansbo, M.G. Larson and A. Massing, CutFEM: Discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104 (2015) 472–501. [Google Scholar]
  11. P.G. Ciarlet, The finite element method for elliptic problems. In: Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). [Google Scholar]
  12. A. Hannukainen, S. Korotov and M. Křížek, The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012) 79–88. [Google Scholar]
  13. J. Haslinger and Y. Renard, A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 47 (2009) 1474–1499. [Google Scholar]
  14. P. Jamet, Estimations d’erreur pour des éléments finis droits presque dégénérés. Rev. Fr. Automat. Inf. Rech. Oper. Sér. 10 (1976) 43–60. [Google Scholar]
  15. P. Jamet, Estimation of the interpolation error for quadrilateral finite elements which can degenerate into triangles. SIAM J. Numer. Anal. 14 (1977) 925–930. [Google Scholar]
  16. K. Kobayashi and T. Tsuchiya, On the circumradius condition for piecewise linear triangular elements. Jpn. J. Ind. Appl. Math. 32 (2015) 65–76. [Google Scholar]
  17. V. Kučera, On necessary and sufficient conditions for finite element convergence (2016) Preprint arXiv:1601.02942. [Google Scholar]
  18. M. Křížek, On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992) 513–520. [Google Scholar]
  19. J. Malý and W. Ziemer, Fine regularity of solutions of elliptic partial differential equations. In, Vol. 51 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997). [CrossRef] [Google Scholar]
  20. P. Oswald, Divergence of FEM: Babuška-Aziz triangulations revisited. Appl. Math. 60 (2015) 473–484. [Google Scholar]
  21. A. Zenšek, Convergence of the finite element method for boundary value problems of a system of elliptic equations. Appl. Math. 14 (1969) 355–377. [Google Scholar]
  22. M. Zlámal, On the finite element method. Numer. Math. 12 (1968) 394–409. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you