Open Access
Issue
ESAIM: M2AN
Volume 58, Number 4, July-August 2024
Page(s) 1413 - 1440
DOI https://doi.org/10.1051/m2an/2024041
Published online 31 July 2024
  1. T. Abbas, H. Ammari, G. Hu, A. Wahab and J.C. Ye, Two-dimensional elastic scattering coefficients and enhancement of nearly elastic cloaking. J. Elast. 128 (2017) 203–243. [CrossRef] [Google Scholar]
  2. H. Ammari, G. Ciraolo, H. Kang, H. Lee and G. Milton, Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208 (2013) 667–692. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Ammari, H. Kang, H. Lee and M. Lim, Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem. Commun. Math. Phys. 317 (2013) 253–266. [CrossRef] [Google Scholar]
  4. H. Ammari, H. Kang, H. Lee and M. Lim, Enhancement of near cloaking. Part II: The Helmholtz equation. Commun. Math. Phys. 317 (2013) 485–502. [CrossRef] [Google Scholar]
  5. H. Ammari, H. Kang, H. H. Lee, M. Lim and S. Yu, Enhancement of near cloaking for the full Maxwell equations. SIAM J. Appl. Math. 73 (2013) 2055–2076. [CrossRef] [MathSciNet] [Google Scholar]
  6. H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, Mathematical Methods in Elasticity Imaging. Princeton University Press, Princeton, NJ (2015). [Google Scholar]
  7. H. Ammari, Y. Deng and P. Millien, Surface plasmon resonance of nanoparticles and applications in imaging. Arch. Ration. Mech. Anal. 220 (2016) 109–153. [Google Scholar]
  8. K. Ando, Y. Ji, H. Kang, K. Kim and S. Yu, Spectrum of Neumann-Poincaré operator on annuli and cloaking by anomalous localized resonance for linear elasticity. SIAM J. Math. Anal. 49 (2017) 4232–4250. [CrossRef] [MathSciNet] [Google Scholar]
  9. K. Ando, Y. Ji, H. Kang, K. Kim and S. Yu, Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance for the elasto-static system. Eur. J. Appl. Math. 29 (2018) 189–225. [CrossRef] [Google Scholar]
  10. G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance. Quart. J. Mech. Appl. Math. 63 (2010) 437–463. [CrossRef] [MathSciNet] [Google Scholar]
  11. Y. Deng and H. Liu, Spectral Theory of Localized Resonances and Applications. Springer Nature Singapore, Singapore (2024). [CrossRef] [Google Scholar]
  12. Y. Deng, H. Li and H. Liu, On spectral properties of Neuman-Poincaré operator and plasmonic resonances in 3D elastostatics. J. Spectr. Theory 9 (2019) 767–789. [Google Scholar]
  13. Y. Deng, H. Li and H. Liu, Analysis of surface polariton resonance for nanoparticles in elastic system. SIAM J. Math. Anal. 52 (2020) 1786–1805. [CrossRef] [MathSciNet] [Google Scholar]
  14. Y. Deng, H. Li and H. Liu, Spectral properties of Neumann-Poincaré operator and anomalous localized resonance in elasticity beyond quasi-static limit. J. Elast. 140 (2020) 213–242. [CrossRef] [Google Scholar]
  15. Y. Deng, H. Liu and G. Zheng, Mathematical analysis of plasmon resonances for curved nanorods. J. Math. Pures Appl. 153 (2021) 248–280. [CrossRef] [MathSciNet] [Google Scholar]
  16. Y. Deng, H. Liu and G. Zheng, Plasmon resonances of nanorods in transverse electromagnetic scattering. J. Differ. Equ. 318 (2022) 502–536. [CrossRef] [Google Scholar]
  17. H. Diao and H. Liu, Spectral Geometry and Inverse Scattering Theory. Springer, Cham (2023). [CrossRef] [Google Scholar]
  18. H. Diao, H. Liu and B. Sun, On a local geometric structure of generalized elastic transmission eigenfunctions and application. Inverse Probl. 37 (2021) 105015. [CrossRef] [Google Scholar]
  19. H. Diao, H. Liu and L. Wang, Further results on generalized Holmgren’s principle to the Lamé operator and applications. J. Differ. Equ. 309 (2022) 841–882. [CrossRef] [Google Scholar]
  20. X. Fang and Y. Deng, On plasmon modes in multi-layer structures. Math. Methods Appl. Sci. 46 (2023) 18075–18095. [CrossRef] [MathSciNet] [Google Scholar]
  21. X. Fang, Y. Deng and J. Li, Plasmon resonance and heat generation in nanostructures. Math. Methods Appl. Sci. 38 (2015) 4663–4672. [Google Scholar]
  22. X. Fang, Y. Deng and X. Chen, Asymptotic behavior of spectral of Neumann-Poincaré operator in Helmholtz system. Math. Methods Appl. Sci. 42 (2019) 942–953. [CrossRef] [MathSciNet] [Google Scholar]
  23. D.M. Kochmann and G.W. Milton, Rigorous bounds on the effective moduli of composites and inhomogeneous bodies with negative-stiffness phases. J. Mech. Phys. Solids 71 (2014) 46–63. [Google Scholar]
  24. R.S. Lakes, T. Lee, A. Bersie and Y. Wang, Extreme damping in composite materials with negative-stiffness inclusions. Nature 410 (2001) 565–567. [Google Scholar]
  25. H. Li and H. Liu, On anomalous localized resonance for the elastostatic system. SIAM J. Math. Anal. 48 (2016) 3322–3344. [CrossRef] [MathSciNet] [Google Scholar]
  26. H. Li and H. Liu, On anomalous localized resonance and plasmonic cloaking beyond the quasistatic limit. Proc. R. Soc. A 474 (2018) 20180165. [Google Scholar]
  27. H. Li, J. Li and H. Liu, On quasi-static cloaking due to anomalous localized resonance in R3. SIAM J. Appl. Math. 75 (2015) 1245–1260. [Google Scholar]
  28. H. Li, J. Li and H. Liu, On novel elastic structures inducing polariton resonances with finite frequencies and cloaking due to anomalous localized resonance. J. Math. Pures Appl. 120 (2018) 195–219. [Google Scholar]
  29. H. Li, S. Li, H. Liu and X. Wang, Analysis of electromagnetic scattering from plasmonic inclusions beyond the quasi-static approximation and applications. ESAIM:M2AN 53 (2019) 1351–1371. [CrossRef] [EDP Sciences] [Google Scholar]
  30. H. Li, H. Liu and J. Zou, Elastodynamical resonances and cloaking of negative material structures beyond quasistatic approximation. Stud. Appl. Math. 150 (2023) 716–754. [CrossRef] [MathSciNet] [Google Scholar]
  31. H. Liu, W.-Y. Tsui, A. Wahab and X. Wang, Three-dimensional elastic scattering coefficients and enhancement of the elastic near cloaking. J. Elast. 143 (2021) 111–146. [CrossRef] [Google Scholar]
  32. G. Milton and N. Nicorovici, On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462 (2006) 3027–3059. [CrossRef] [MathSciNet] [Google Scholar]
  33. M. Ruiz and O. Schnitzer, Slender-body theory for plasmonic resonance. Proc. R. Soc. A 475 (2019) 20190294. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you