Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 4, July-August 2024
|
|
---|---|---|
Page(s) | 1385 - 1411 | |
DOI | https://doi.org/10.1051/m2an/2024034 | |
Published online | 30 July 2024 |
- M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis, in Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York (2000). [Google Scholar]
- J. Aponte, H.C. Abache, A. Sa-Neto and M. Octavio, Temperature dependence of the critical current in high-Tc superconductors. Phys. Rev. B: Condens. Matter; (United States) 39 (1989) 4. [Google Scholar]
- J.W. Barrett and L. Prigozhin, A quasi-variational inequality problem in superconductivity. Math. Models Methods Appl. Sci. 20 (2010) 679–706. [CrossRef] [MathSciNet] [Google Scholar]
- J.W. Barrett and L. Prigozhin, Sandpiles and superconductors: nonconforming linear finite element approximations for mixed formulations of quasi-variational inequalities. IMA J. Numer. Anal. 35 (2015) 1–38. [CrossRef] [MathSciNet] [Google Scholar]
- C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8 (1962) 250–253. [CrossRef] [Google Scholar]
- A. Bossavit, Modelling superconductors with Bean’s model, in dimension 2: Stefan’s problem, again, in Progress in Partial Differential Equations: The Metz Surveys, 3. Vol. 314 of Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow (1994) 33–38. [Google Scholar]
- A. Bossavit, Numerical modelling of superconductors in three dimensions: a model and a finite element method. IEEE Trans. Magn. 30 (1994) 3363–3366. [CrossRef] [Google Scholar]
- A. Bossavit, Superconductivity modelling: homogenization of Bean’s model in three dimensions, and the problem of transverse conductivity. IEEE Trans. Magn. 31 (1995) 1769–1774. [CrossRef] [Google Scholar]
- A. Bossavit, Discretization of electromagnetic problems: the Generalized Finite Differences approach, in Numerical Methods in Electromagnetics. Vol. 13 of Handbook of Numerical Analysis. Elsevier (2005) 105–197. [Google Scholar]
- M. Ciszek, B.A. Glowacki, S.P. Ashworth, A.M. Campbell, W.Y. Liang, R. Flükiger and R.E. Gladyshevskii, AC losses and critical currents in Ag/(Tl,Pb,Bi)-1223 tape. Phys. C Supercond. 260 (1996) 93–102. [CrossRef] [Google Scholar]
- C.M. Elliott and Y. Kashima, A finite-element analysis of critical-state models for type-II superconductivity in 3D. IMA J. Numer. Anal. 27 (2007) 293–331. [CrossRef] [MathSciNet] [Google Scholar]
- H. Federer, Geometric Measure Theory. Vol. Band 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York, Inc., New York (1969). [Google Scholar]
- F. Grilli, E. Pardo, A. Stenvall, D.N. Nguyen, W. Yuan and F. Gömöry, Computation of losses in HTS under the action of varying magnetic fields and currents. IEEE Trans. Appl. Supercond. 24 (2014) 78–110. [CrossRef] [Google Scholar]
- M. Hintermüller and C.N. Rautenberg, Parabolic quasi-variational inequalities with gradient-type constraints. SIAM J. Optim. 23 (2013) 2090–2123. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hintermüller and C.N. Rautenberg, On the uniqueness and numerical approximation of solutions to certain parabolic quasi-variational inequalities. Port. Math. 74 (2017) 1–35. [CrossRef] [MathSciNet] [Google Scholar]
- R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. [CrossRef] [MathSciNet] [Google Scholar]
- K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. Society for Industrial and Applied Mathematics (2008). [Google Scholar]
- F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989) 479–490. [MathSciNet] [Google Scholar]
- Y.B. Kim, C.F. Hempstead and A.R. Strnad, Magnetization and critical supercurrents. Phys. Rev. 129 (1963) 528–535. [CrossRef] [Google Scholar]
- S. Lang, Real and Functional Analysis, 3 edition. Springer-Verlag New York (1993). [CrossRef] [Google Scholar]
- J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493–519. [CrossRef] [MathSciNet] [Google Scholar]
- A. Logg, K.-A. Mardal and G.N. Wells, editors. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Vol. 84 of Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2012). [CrossRef] [Google Scholar]
- F. Miranda, J.-F. Rodrigues and L. Santos, Evolutionary quasi-variational and variational inequalities with constraints on the derivatives. Adv. Nonlinear Anal. 9 (2020) 250–277. [CrossRef] [MathSciNet] [Google Scholar]
- P. Monk, Finite element methods for Maxwell’s equations, in Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). [CrossRef] [Google Scholar]
- J.-C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [Google Scholar]
- L. Prigozhin, On the Bean critical-state model in superconductivity. Eur. J. Appl. Math. 7 (1996) 237–247. [CrossRef] [Google Scholar]
- J.F. Rodrigues and L. Santos, A parabolic quasi-variational inequality arising in a superconductivity model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000) 153–169. [Google Scholar]
- J.H.P. Watson, Magnetization of synthetic filamentary superconductors. B. The dependence of the critical current density on temperature and magnetic field. J. Appl. Phys. 39 (1968) 3406–3413. [CrossRef] [Google Scholar]
- K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. [Google Scholar]
- I. Yousept, Maxwell quasi-variational inequalities in superconductivity. ESAIM Math. Model. Numer. Anal. 55 (2021) 1545–1568. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.